Section 1

DL05/06 PLC
Section 2

DL105 PLC
Section 3

DL205 PLC

Section 4

DL305 PLC

Section 5

DL405 PLC
Section 6

Productivity3000
Section 7

In this interactive PDF you can:

- Use bookmarks to navigate by product category
- Use bookmarks to save, search, print or e-mail the catalog section
- Click on part \#s to link directly to our online store for current pricing, specs, stocking information and more

DL305 - Stay ahead by building on the past

What is it?

The DL305 series is a small modular PLC that has been marketed by various name-brand PLC manufacturers for over 29 years. This Koyo design revolutionized the small PLC market, and is still going strong in tens of thousands of installations. If you subscribe to the "If it ain't broke, don't fix it!" adage, be assured that you can maintain your current system with fully compatible replacement modules.

What's it got?

- Three standard CPUs, including the D3-350 with PID control and two communication ports
- Specialty CPUs to convert a DL305 system into an RTU for Optomux, Pamux, or to allow BASIC programming for custom applications
- 5, 8 and 10-slot bases
- 110/220VAC or 24VDC power supply
- AC, DC inputs
- AC, DC, and relay outputs
- 8 or 12-bit analogg input/output
- Specialty modules such as high-speed counter, and communication interface module (work with D3-330 and D3-340 CPUs)

What can I do with it?

- Maintain or upgrade any installed GE Series One, Texas Instruments Series 305, or Siemens SIMATIC TI305 system
- Build a system that meets Class I Division II classification
- Build RTU I/O stations for a host computer with a serial or parallel interface
- Build an intelligent RTU that programs in the BASIC lanģuage

You can swap parts among all the PLCs on the opposite page!

The DL305 PLC design has offered exceptional reliability, the right mix of features and a great price. This design was so well-liked when it was introduced that it became the most popular privatelylabeled PLC in history. Best of all, almost every part produced in its 27 -year history is interchangeable.

GE nicknamed it "America's Most Popular PLC"

In 1983, General Electric decided to private label the Koyo SR21 design. They called it the General Electric Series One and changed the color from Koyo yellow to black. The product sold so well they nicknamed it "America's Most Popular PLC."

Texas Instruments called it the "Best Value PLC"

In 1989, Texas Instruments began to private label the Koyo SR21 design. They named it the Series 305 and changed the plastic color to light gray. The product was enhanced and did so well for Texas Instruments that they nicknamed it the "Best Value PLC."

Siemens also called it the "Best Value PLC"

In 1991, Siemens Industrial Automation decided to private label the Koyo SR2 1 design. They named it the SIMATIC TI305 and changed the color to charcoal grey. Once again, the product line continued to receive enhancements and the nickname "Best Value PLC" continued at Siemens.

AutomationDirect calls it a "PLC Classic" and keeps it current

In 1994, AutomationDirect added more enhancements with Windows-based DirectSOFT, and in 1997 introduced the D3-350 CPU, which offered updated features while maintaining compatibility.

Credibility in numbers

The Koyo DL305 design has been one of the most widely marketed PLCs in history. Millions of modules have been sold, proving that they are extremely reliable and well-suited for many applications, and they cost less from us now than they ever did from any of the guys who previously marketed this solid PLC line.

PLC CPUS: DL 305

 Field tested
for over 29 years

D3-350 CPU can bring your legacy

 system up to dateThe D3-350 CPU has an expansive instruction set (compatible with the DL405, DL205, DL105, DL06 and DL05 families) and some super practical communications. The D3-350 CPU can use a simplified I/O addressing method, and can access up to twice as much local I/O as any other DL305 configuration (when installed in a system with "-1" bases).

Order online or call 1-800-633-0405 for replacement modules
Maintain or upgrade any installed GE Series One,

Sensors

Pressure
Sensors

Temperature
Sensors

Pushbuttons/
Lights

Process
Relays/
Timers
Comm.
Terminal
Blocks \&
Wiring
Power
Circuit
Protection
Enclosures

Tools

Pneumatics

Safety
Appendix
Product
Index
Index
Texas Instruments Series 305, or Siemens SIMATIC 71305 system
Index

DL305 Family of Products

DL305 system example with serial communications network and operator interface

DL305 Family of Products

The following is a quick summary of the DL305 family of products. The DL305 products have been sold by previous vendors under a wide variety of part numbers. A complete list of product offerings with vendor cross-reference is available in the DL305 price list.

CPUs

D3-350-14.8K total memory
2 communication ports
4 PID loops
MODBUS Master/Slave
Remote I/O
Floating point math
D3-340 - 3.7K total memory
2 communication ports
D3-330 - 3.7 K total memory

Specialty CPUs

F3-OMUX-1

Serial interface to Optomux host
2 communication ports
(RS232C/422/485) selectable
F3-0MUX-2
Serial interface to Optomux host
2 communication ports
(RS422/485)
F3-PMUX-1
Parallel interface to Pamux host

Bases

5-slot local or expansion base
Built-in 110/220 VAC power supply
5-slot local or expansion base Built-in 24 VDC power supply
8-slot local base
(exp. base w/350 CPU)
Built-in 110/220 VAC power supply
10-slot local or expansion base
Built-in 110/220 VAC power supply
10 -slot local or exp. base
Built-in 24 VDC power supply

Discrete input modules

DC Input

8-pt. 24VDC source
16-pt. 5V/12-24VDC (sink/source,1ms response)
16-pt. 24VDC source (0.8ms response)

AC Input

8-pt. 110/220VAC
16 -pt. 110 VAC
AC/DC Input
8 -pt. 24VAC/DC
16-pt. 24VAC/DC

Discrete output modules

DC Output

4-pt. 5-24VDC sink
8-pt. 5-24VDC sink
8-pt. 5-24VDC source
16-pt. 5-24VDC sink
16-pt. 5-24VDC source

AC Output

4-pt. 110-220VAC isolated
8 -pt. 110VAC isolated
8-pt. 110-220VAC isolated
16-pt. 15-220VAC

RELAY Output

8-pt. 5.0A/pt
8-pt. 4.0A/pt isolated
8 -pt. 10.0A/pt isolated
16-pt. 2A/pt

Analog modules

4 Channel IN, 12 bit, isolated
8 Channel IN, 12 bit
8 Channel thermocouple
16 Channel IN, 12 bit
4 Channel OUT 12 bit
4 Channel OUT 12 bit (isolated)

Specialty modules

8 pt. Input Simulator Filler Module

Programming

D3-HP Handheld Programmer for D3-330/D3-340

D2-HPP Handheld Programmer with built-in RLL ${ }^{\text {PuS }}$ for D 3 -350

DIN rail mounted terminal blocks

See the Connection Systems section for over 200 available options.

Communications

Data Comm Unit (RS232C), 330/340 CPUs only Data Comm Unit (RS422), 330/340 CPUs only Data Comm Module, 350 CPU only

Operator panels

See the Operator Interface section for a complete listing of all types of panels and software.

Connection systems

See the Wiring Solutions section in this catalog for information on DINnector terminal blocks, ZIPLink connection systems and other connection accessories for use with the DL305 system.

DL305 CPUs

There are three conventional CPUs and three specialty CPUs in the DL305 family. There are many considerations for choosing the right CPU, most of which depend on your particular application. The traditional CPUs, which offer control via RLL-style programming, are great for most applications. The information in this section provides a quick comparison. If you need to control I/O with a personal computer, or if you want to run a BASIC program in a CPU instead of ladder logic,

D3-330 - The D3-330 design has been very popular for many years. It offers the lowest-cost solution in the DL305 family. It is great for machines that need little (if any) communications between the CPU and other devices.
D3-340 - The D3-340 offers a faster scan rate, two RS232C ports (one with built-in Modbus RTU slave) and additional I/O points. Need RS422? Simply add an FAISOCON converter to one of the ports. If you need built-in communications, or even just an extra 16-point I/O card, the D3340 offers the lowest-cost solution. This CPU allows you to make the most of your investment in a DL305 (or compatible) system.

D3-350-The D3-350 is the most powerful DL305 CPU. It is a spin-off of the D4-450 and D2-250(-1). It is plugcompatible with older bases, as well as analog and discrete I/O modules. The instruction set and I/O numbering scheme are similar to our DL05, DL06, DL105, DL205 and DL405 PLCs. The communications capabilities have also been greatly enhanced to include RS422 Remote I/O, MODBUS Master and Slave protocols, as well as our own DirectNet and K-Sequence protocols. When the D3-350 is installed in a - 1 base, even more features are available. These bases allow for greater I/O expansion capabilities and for intelligent I/O modules.

NOTE: D3-330 and D3-340 programs cannot be downloaded into the D3-350 CPU. The D3-350's instruction set is based on the DL205/DL405 instruction set. If an existing D3-330 or D3-340 system is upgraded to a D3-350 CPU, the RLL program must be re-written for the D3-350 CPU.

CPU Specifications

DL305 CPU Specifioations			
System Capacity	D3-330	D3-340	D3-350
Total memory (K words) Ladder memory (K words) User data memory CMOS RAM UVPROM EEPROM Total I/O points using: Local I/O Local and Expansion I/0 Remote $/ 0^{1}$ I/0 point density Slots per base (CPU requires 1 slot)	$\begin{aligned} & \hline 3.91 \\ & 3.7 \\ & 116 \text { bytes } \\ & \text { Yes } \\ & \text { Opt. } \\ & \text { No } \\ & 128 \\ & 176 \\ & \mathrm{~N} / \mathrm{A} \\ & 8 / 16 \\ & 5 / 8 / 10 \end{aligned}$	$\begin{aligned} & \hline 3.98 \\ & 3.7 \\ & 172 \text { bytes } \\ & \text { Yes } \\ & \text { Opt. } \\ & \text { Opt. } \\ & 136 \\ & 184 \\ & \text { N/A } \\ & 8 / 16 \\ & 5 / 8 / 10 \end{aligned}$	$\begin{aligned} & \hline 14.8 \\ & 7.6 \\ & 7.1 \mathrm{~K} \text { words } \\ & \mathrm{No} \\ & \mathrm{No} \\ & \text { Flash } \\ & 144 \\ & 368 \\ & 512 \\ & 8 / 16 \\ & 5 / 8 / 10 \end{aligned}$
Performance			
Contact execution (boolean) Typical scan (1K boolean) ${ }^{2}$	$\begin{aligned} & 6.6 \mu \mathrm{~s} \\ & 15 \mathrm{~ms} \end{aligned}$	$\left\lvert\, \begin{array}{\|l\|l\|} \hline 8-5 \mathrm{~ms} \\ \hline \end{array}\right.$	$\left\lvert\, \begin{aligned} & .61 \mu \mathrm{~s} \\ & 5-6 \mathrm{~ms} \end{aligned}\right.$
Programming \& Diagnostics			
RLL ladder style RLL ${ }^{\text {Pus }}$ (stage) RunTime Editing Supports Overrides Variable/fixed scan Handheld programmer port Built-in RS232C ports Real-time clock/calendar Instructions Control relays(CR) Shift register bits Stages (RLLLus only) Timers/counters Immediate I/0 Subroutines For/Next Loops Timed interrupt Integer math Floating point math PID Drum sequence Bit of word ASCII print Data registers Internal diagnostics Password security Battery backup	Yes No No No variable Yes No ${ }^{3}$ No 61 140 128 N/A 64 No No No No Yes No No No No No 128 Yes Yes Yes	Yes No No No variable Yes 2 No 63 196 128 N/A 64 No No No No Yes No No No No No 192 Yes Yes Yes	Yes Yes Yes Yes either Yes 2 Yes 129 1024 use CRs 1024 256/128 Yes 7168 Yes Multi-level Yes
Communications			
Built-in ports ${ }^{3}$ DirecNET master DirecNET slave MODBUS RTU master MODBUS RTU slave Data communications unit	$\begin{aligned} & \text { No } \\ & \text { No } \\ & \text { w/DCU } \\ & \text { No } \\ & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \\ & \text { No } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \mathrm{N} / \mathrm{A} \end{aligned}$
Specialty modules			
Thermocouple Analog Input (\#channels max.) Analog output (\#channels max.) High-speed counter (10KHz)	$\begin{aligned} & \text { Yes } \\ & 112 \\ & 28 \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & 128 \\ & 32 \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & 368 \\ & 48 \\ & \text { No } \end{aligned}$

1. The D3-350 bottom port supports DL205 remote I/O.
2. 1 K program includes contacts, coils, and scan overhead. If you compare to other products, make sure to include their scan overhead.
3. The D3-330 requires a Data Communications Unit (DCU) for programming with DirectSOFT software.

D3-350 CPU

D3-350 <--->

Our most powerful DL305 CPU

The D3-350 combines the power, speed and ease of the D2-250-1 CPU with existing DL305 I/O modules and bases.
DirectSOFT Programming Software Release V2.3 or higher is required to program the D3-350. For existing license holders, an upgrade package is available. If you are using a handheld programmer (D2-HPP, release 1.8 or lower), a new release of handheld programmer firmware will also be required.

Four PID loops and auto-tuning

The D3-350 CPU can process up to four PID loops directly in the CPU. Select from various control modes, including automatic, manual and cascade control. There are a wide variety of alarms including Process Variable, Rate of Change and Deviation. The loop operation parameters (Process Variable, Setpoint, Setpoint Limits, etc.) are stored in V-memory, which allows easy access from operator interfaces or HMIs.
Setup is accomplished with easy-to-use setup menus and monitoring views in our DirectSOFT Programming Software.
The auto-tuning feature is also easy to use and can reduce setup and maintenance time. The CPU uses the auto-tuning feature to automatically determine near optimum loop settings.

Note: D3-330 and D3-340 programs cannot be downloaded into the D3-350 CPU. The D3-350's instruction set is based on the DL205/DL405 instruction set. If an existing D3-330 or D3-340 system is upgraded to a D3-350 CPU, the RLL program must be re-written for the D3350 CPU.

Powerful built-in CPU communications

The D3-350 offers two communication ports that provide a vast array of communication possibilities. The top RS232C port is for programming, a DV-1000 connection, a connection to our operator interface panels, or a K-sequence/DirectNET slave port. The 25 -pin bottom port can use RS232C or RS422. This port offers several different protocol options, such as K-sequence protocol, DirectNET Master/Slave, Modbus Master/-Slave, and even a direct connection to DL205 remote I/O. The ability to select these features is provided via software so you can choose the best combination for the application.

D3-350 Key Features

The D3-350 supports over 130 instructions. These include:

- Four types of drum sequencers
- Leading and trailing edge triggered oneshots
- Bit of word manipulation
- Floating point conversions
- Print instruction to send ASCII data through the bottom CPU port
For a complete list of instructions supported by the D3-350 CPU, see the end of this section.

On-board flash memory

The D3-350 has 7.6 K of flash memory on board. With flash memory, you don't have to worry about losing the program due to a bad battery. If you have critical data stored in V-memory, like PID loops, simply purchase the optional lithium battery to maintain these parameters as well.

Built-in remote I/O connection

The bottom port on the D3-350 can also be used as a master for a remote I/O network. If you need extra I/O at some remote distance from the CPU, use this port to add up to seven DL205 remote slave stations. (See the DL205 section for D2-RSSS information.)

...allows you to connect up to seven DL205 remote slaves!

D3-350 PID Loop Specifications

PID Loop Specifications and Key Features	
Number of Loops	Selectable, four maximum
CPU V-Memory Required	32 V -memory locations per Ioop selected (additional 32 V -memory locations per loop required if using Ramp/Soak)
PID Algorithm	Position or velocity form of the PID equation. direct or reverse acting, square root of the error and error squared control.
Auto Tuning	Open-loop step response method and closed-loop limit cycle method.
Sample Rate	Specify the time interval between PV samples, 0.05 to 99.99 seconds. Smallest sample rate is limited to either 0.05 seconds or (PLC scan time x number of loops).
Loop Operation Modes	Loops can be in automatic control, manual (operator) control, or cascade control. PV alarm monitoring continues when loops are in manual mode.
Ramp/Soak	Up to 16 steps (8 ramp, 8 soak) per loop, with indication of ramp/soak step.
Square Root PV	Specity a Square root of the PV for a flow control application.
Limit SP	Specity a maximum and minimum value for allowable setpoint changes.
Limit Output	Specity a maximum and minimum value for the output range.
Gain	Specity proportional gain of 0.01 to 99.99 .
Reset	Specify integral time of 0.1 to 999.8 in units of seconds or minutes.
Rate	Specity the derivative time, 0.00 to 99.99 seconds.
Rate Limiting	Specify a derivative gain limiting coefficient to filter the PV used in calculating the derivative term (0 to 20).
Bumpless Transfer I	Bias and setpoint are initialized automatically when the module is switched from manual to automatic. This provides for a bumpless transfer, which reduces the chance of sharp changes in the output as a result of entering automatic mode.
Bumpless Transfer II	Bias is set equal to the output when the module is switched from manual to automatic. This allows switching in and out of automatic mode without having to re-enter the setpoint.
Error Deadband	Specify an incremental value above and below the setpoint in which no change in output is made.
Error Squared	Squaring the error minimizes the effect a small error has on the Loop output, however both Error Squared and Error Deadband control may be enabled.
	Alarm Specifications
Deadband	Specity 0.1% to 5% alarm deadband on all alarms except rate of change.
PV Alarm Points	Specify PV alarm settings for low-low, low, high, and high-high conditions. You can also specify a deadband to minimize the alarm cycles when the PV approaches alarm limits.
PV Deviation	Specify alarms to indicate two ranges of PV deviation from the setpoint value (yellow and red deviation).
Rate-of-Change	Specity a rate-of-change limit for the PV.

D3-330 and D3-340 Key Features

D3-330
D3-340
The diagram to the right shows the various hardware features found on the D3-330 and D3-340 CPUs.

	CPU Status Indioators	
RUN	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	CPU is in RUN mode CPU is in Program mode
BATT	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	Memory backup voltage low Memory backup voltage good
CPU	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	CPU failure CPU is good
PWR (Power)	$\begin{aligned} & \text { ON } \\ & \text { OFF } \end{aligned}$	CPU power good CPU power failure
Port1 RX/TX (D3-340)	RED GREEN	Flashing red indicates the CPU port is receiving data Flashing green indicates the CPU por is sending data
Port2 RX/TX (D3-340	$\begin{aligned} & \text { RED } \\ & \text { Green } \end{aligned}$	Flashing red indicates the CPU port is receiving data Flashing green indicates the CPU port is sending data

EEPROM and UVPROM chips

The DL305 CPUs come with on-board RAM and a battery. If you need additional program security, you may want to choose the EEPROM or UVPROM memory.

D3-CPU-UV <---> Optional

UVPROM memory. Four chips per pack. (Only one chip is required for the CPU.) A D3-PWU Prom Writer Unit is required for programming.

D3-340-EE <--->

Optional EEPROM memory for the D3340 only. Four chips per pack. (Only one chip is required for the CPU.) No additional programming device is necessary.

D3-D4-BAT <--->

Spare battery (lithium 3.0V). Also used for D4-430 and D4-440 CPUs.

I3-340 RS232C Communication Port Specs	
Protocol	DirectNET
Connector	RJ11(handset connector)
Network address	01 to 90
Baud rate	$38400,19200,9600,4800,2400,1200,600,300$
Parity-	None or odd
Transfer mode	HEX/ASCII Half-duplex Asynchronous
Data bits	8
Start bits	1
Stop bits	1
Turn around delay	0 to 1980 in 20ms intervals (preset with R777)

Hardware switches

Below is a side view of a D3-340 CPU that shows several types of hardware switches.
The D3-330 has a 2 -position dipswitch for selecting retentive memory and jumpers for selecting UVPROM and RAM options.

The D3-340 has a jumper switch for selecting UVPROM, EEPROM and RAM options, two rotary switches to select network addresses and an eight-position dipswitch for selecting baud rates (300 to 38.4 K baud), communication mode (slave, master, Modbus RTU) and memory options.

DL305 Specialty CPUs

Your application may require an unconventional PLC solution. For instance, you may need computer-controlled I/O (the PLC I/O is controlled directly by your personal computer), or maybe you would like a PLC that executes a control program written entirely in BASIC instead of RLL. AutomationDirect offers three specialty CPUs that provide solutions for each of these applications.

Computer I/O CPUs

Three CPUs are available for the DL305 family that allow DL305 I/O (with DL305 bases) to function as computer-controlled I/O. These CPUs (F3-OMUX-1, F3-OMUX-2 and the F3-PMUX-1) are similar in functionality, but offer different communication options. Each CPU allows DL305 modules of most types (see restrictions on types) to be interfaced with a host computer. The entire control program for the DL305 I/O is executed on the host computer, which uses an OPTOMUX or PAMUX driver.

I/O module restrictions

The specialty CPUs can make use of almost all DL305 modules, but they do not support the D3-HSC, or D3-02DA modules. These modules can only be used with the regular CPUs (D3-330 and D3-340).

The F3-OMUX $(-1,-2)$ CPU plugs into the first slot of a DL305 base. It acts as a serial interface to the control
 program in the host computer and up to 184 DL305 I/O per CPU. Multiple CPUs can be daisychained together to increase I/O count. The host computer must use an OPTOMUX serial communication driver. The host can execute a custom program or use a standard software package that supports OPTOMUX drivers such as IntouchWonderware, Iconics-Genesis, U.S. Data FactoryLink, Metra-Skyhawk Lt, etc.

General Specifications

-Two serial ports that support the OPTOMUX protocol
F3-OMUX - 1
RS232C/RS422/RS485
F3-OMUX-2
RS422/RS485 (isolated)
-Max of 184 I/O points per CPU (with expansion base unit)
-Scan time is dependent on the communication speed, number of commands sent, type of commands sent, the size of the response and the speed of the host computer.

F3-PMUX-1 <--->

The F3-PMUX is similar in operation to the F3-OMUX $(-1,-2)$. It uses a parallel interface instead of serial interface. As a result, it requires the host computer to use a PAMUX communication board (OPTO 22 part number AC28 or equivalent). With this board, you can use PAMUX communication drivers in your host software. Scan time constraints are similar to the OMUX units.
The -1 version has a $26 M h z$ processor and replaces the F3-PMUX CPU.

The following charts show the various features found on the DL305 specialty CPUs:

F3-OMUX-n	
Communication port specifications	
Interface	$\begin{aligned} & \text { F3-OMUX-1: RS232C/422 } \\ & \text { F3-OMUX-2: RS422/485 (isolated) } \end{aligned}$
Connector	Two 9-pin D-sub sockets (female)
Baud Rate	Port 1: 300, 1200, 2400, 4800, 9600, 9200, 38400, 57600, 115200 Port 2: 9600
Protocol	OPTO 22 serial communications

F3-PMUX-1

Communication port specifications

Interface	Parallel
Connector	50 -pin ribbon cable connector
Protocol	OPTO 22 parallel communications

Communications

Determine your communications requirements

The choice of CPU can have a big impact on your communications capabilities in the DL305 family. If you are considering doing any communications, you should use the D3-340 or the D3-350 CPUs. You can communicate with the D3-330 CPU, but you have to add a DL305 Data Communications Unit to connect any device other than a handheld programmer. The Data Communications Unit has only one port.

I3-340 RS232F Spectifioations	
Protocol	DirectNET
Connector	RJ11(handset connector)
Network address	01 to 90
Baud rate	$38400, ~ 19200, ~ 9600, ~ 4800, ~$ $2400, ~ 1200, ~ 600, ~ 300 ~$
Parity-	None or odd
Transfer mode	Half-duplex Asynchronous
Data bits	8
Start bits	1
Stop bits	1
Turn around delay	0 to 1980 in 20ms intervals (preset with R777)

Standard communications

The D3-340 and D3-350 CPUs offer two built-in RS232C communication ports. Operator interfaces and DirectSOFT can be connected to either port. On the D3-340 CPU, the handheld programmer is attached directly or with a cable to the parallel port adjacent to the two serial communication ports. On the D3-350 CPU, the handheld programmer is attached to Port 1. The handheld programmer can be operated simultaneously with the communication ports. The D3-340 baud rate and network addresses are set by hardware dipswitches and rotary switches for Port 1. Port 2 uses internal registers that can be changed with a handheld programmer or DirectSOFT. Port 1 on the D3-350 is fixed. Port 2 can be configured using the handheld programmer or DirectSOFT.

DL305 as a slave on a network

Both ports on the D3-340 and the D3-350 CPUs can serve as slave ports for DirectNET. The bottom ports offer additional flexibility in that they can serve as a slave on a Modbus RTU network. The D3350 even supports RS422, so no RS232-to-RS422 converter is needed. No programming is required in these CPUs for them to act as slave ports.

DL305 as a network master

The bottom built-in communication port of the D3-340 and D3-350 CPUs can serve as a Network Master for DirectNET. Up to 90 slave stations can be addressed. The D3-350 can also serve as a MODBUS RTU Master; up to 247 slave stations can be addressed. DL405, DL305 and DL205 controllers can be used as slave stations. (Please note there are certain restrictions pertaining to valid DL205 and DL405 memory types that the D3-340 master can read and write.)

Custom drivers

The DL305 product family supports the DirectNET protocol. However, in some applications you may have a need to connect to a device that does not support this protocol. If so, the ASCII/BASIC modules also allow you to write your own custom communication drivers (in BASIC) to connect to special devices. These highspeed modules offer communication rates up to 115.2 K baud on RS232C, RS422, and RS485. With 128 K of memory, there is ample program or data storage space. (These modules are not supported by the D3-350.)

I/O Selection

Choose your I/O modules

There are three major factors to consider when choosing an I/O module:

Environmental specifications:

What environmental conditions will be present?

Hardware specifications:

Does this product have the right features, performance and capacity to adequately serve the application?

Field termination:

How does this module connect to field devices? For DC modules, is a sinking or sourcing module required?

Environmental specifications

The adjacent table lists the environmental specifications that globally apply to the DL305 system (CPU, Bases, and I/O modules). Be sure the modules you choose are operated within these environmental specifications.

Review I/O

hardware

specifications

The hardware specifications for every DL305 module are listed with each module. Discrete module specifications are shown in a format similar to the example to the right. Take time to understand the specification chart, the derating curve and the wiring diagram.
Specialty module specifications are shown in a format that is relevant for each particular module. These module specifications should help you determine if this module is right for your application.

General I/O module specifications

I/O Selection

Factors affecting field termination

Sinking and sourcing for DC field devices: If you are using a DC type of field device, then you should consider whether the device is a sinking or sourcing configuration. This may affect your module selection since it determines the manner in which the device must be wired to the module. (Both sinking and sourcing modules are available.) Refer to the sinking/sourcing section of the Appendix for a complete explanation of how this could affect your system.
Physical wire terminations: In general, DL305 modules use five types of field terminations. They include: removable terminal blocks (included on most 8 and 16-point modules), fixed terminal blocks; specialty D-sub connectors (used on a few 16-point modules), standard D-sub connectors (used on most specialty intelligent modules), and phone jack style (used on the D3-340 CPU, some specialty modules and the universal cable kit). The module descriptions indicate the connector type that is on the module. The following illustrations shows these types of connectors. You can also use our DIN rail-mounted terminal blocks, DINnectors, or ZIPLink cables as a field termination interface to the PLC and I/O modules.

Choose your modules

Now that you understand the factors that affect your choice of an I/O module, it's time to choose ones that best suit your needs. When you have selected the modules, proceed to the next section to choose an I/O configuration scheme that best suits your application.

ZIPLink Connection System

If your application requires a lot of relay outputs, consider using the ZIPLink AC or DC relay output modules. These modules can switch high current (10A) loads without putting a load on your base power budget. Refer to the Terminal Blocks and Wiring Solutions section in this catalog for more information.
This logo is placed next to the I/O modules that are supported by the ZIPLink connection systems. See the I/O module specifications at the end of this section.

Extra connectors or spare fuses

There are several types of spare parts that may be useful. A filler module provides a quick and easy way to cover empty slots. Or, it is sometimes helpful to have extra I/O module connectors or spare fuses. Also, keep in mind the DINnector family which provides DIN rail-mounted terminal blocks for simplifying and organizing your wiring needs.

- F3-FILL-CB - Filler module for empty slots <--->
- D3-16IOCON - 16pt. I/O terminal blocks <--->
- D3-8IOCVR - 8pt. I/O terminal plastic covers <--->
- D3-16IOCVR - 16pt. I/O terminal plastic covers
<--->
- D3-IODSHEL - 24-pin D-shell connectors <--->
- D3-FUSE-1- Fuses for D3-05B, D3-08B, and D3-10B
<--->
- D3-FUSE-2 - Fuses for D3-04TAS <--->
- D3-FUSE-3 - Fuses for D3-05BDC and D3-10BDC
<--->
- D3-FUSE-4 - Fuses for D3-08TAS,

D3-08TAS-1, F3-16TA-1 and F3-16TA -2
<--->

- D3-FUSE-5 - Fuses for D3-08TR
<--->
- D3-FUSE-6 - Fuses for F3-08TRS-2
<--->
- D3-ACC-1 - Base power terminal strip screws
<--->
- D3-ACC-2 - Spare terminal screws for 8 pt. I/O modules <--->
- D3-ACC-3 - Spare terminal screws for 16pt.

Fixed terminal block

ZIPLinks eliminate the tedious process of wiring PLC I/O terminal blocks.

DL305 I/O Configuration

Local I/O - Local I/O are the modules that reside in the same base as the CPU. The status of each I/O point is updated on each I/O scan of the CPU.
Local expansion I/O - Most local CPU bases can be expanded to include expansion I/O. Local expansion is commonly used when there are not enough I/O points available in the existing base configuration or the power budget maximum for the existing base will be exceeded with the addition of I/O. This configuration requires an additional base(s) and an I/O expansion cable(s). The CPU treats the expanded I/O in the same manner as local I/O, with updates every CPU I/O scan. There are certain addressing restrictions that are related to expansion I/O.
Remote I/O - (D3-350 CPU only) Remote I/O is used when you need to place I/O bases at some remote distance from the CPU base. There are certain restrictions that are related to remote I / O. Check the catalog section on DL205 Remote I/O for examples and additional information.

I/O Configuration Limitations	D3-330	$\begin{aligned} & \text { D3-340/ } \\ & \text { D3-350 } \end{aligned}$	D3-350 with -1 bases (AC powered only)
5-slot Local CPU Base System	$641 / 0$ max	$641 / 0$ max	$641 / 0$ max
5-slot Local CPU Base System with a 5-slot Expansion Base	$1201 / 0$ max	$1281 / 0$ max	$144 \mathrm{I} / 0$ max
5-slot Local CPU Base System with two 5-slot Expansion Bases	$1201 / 0$ max	128 I/0 max	$2241 / 0$ max
8-slot Local CPU Base System	$112 \mathrm{I} / 0$ max	$1121 / 0$ max	$112 \mathrm{I} / 0$ max
8-slot Local CPU Base System with a 5-slot Expansion Base	152 I/O max	$152 \mathrm{I} / 0 \mathrm{max}$	192 //0 max
8-slot Local CPU Base System with an 8-slot Expansion Base	N/A	N/A	$2401 / 0$ max
$\begin{aligned} & \text { 8-slot Local CPU Base System with an } \\ & \text { 8-slot Expansion Base \& 5-slot Expansion } \\ & \text { Base } \end{aligned}$	N/A	N/A	$3201 / 0$ max
8-slot Local CPU Base System with two 8-slot Expansion Bases	N/A	N/A	368 I/0 max
10-slot Local CPU Base System	128 I/0 max	136 I/0 max	144 I/0 max
10-slot Local CPU Base System with a 5-slot Expansion Base	168 I/O max	176 I/0 max	$2241 / 0$ max
10-slot Local CPU Base System with a 10-slot Expansion Base	176 I/0 max	184 I/0 max	$3041 / 0$ max

Note: The 16-point modules must be in the first eight slots adjacent to the CPU, rolling over into an expansion base if necessary.

Example of I/O system with expansion I/O

I/O Module Locations

The design of the DL305 has a successful 29 -year history. Each time the product family has grown or been enhanced, compatibility with the earlier products has been preserved to protect customer investments. This has resulted in an $1 / O$ numbering system and I/O location scheme that has some special requirements.
The Module Placement Guideline table explains the rules that pertain to module location. Some specialty modules have additional requirements. These are explained in their respective module data sheets. Remember that the power budget will limit the location where some modules can be placed in a base.

Module Placement Guidelines	
Device	Placement
CPU	-The CPU must reside in the first slot of the local CPU base (closest to the power supply). - The CPU slot does consume an I/O slot. For example, a D3-05B-1 5 -slot base has a slot for the CPU and 4 slots for I/0 modules.
16 Point I/O Modules	A maximum of eight 16-point modules may be installed in a system. However, the actual number allowed depends on the type of CPU you are using. D3-330- maximum of seven 16-pt. modules D3-340/350 - maximum of eight 16 -pt. modules D3-350 - w/-1 base can have 16-pt. modules in all available slots

DL305 Addressing

D3-330/340

Like the DL205 and DL405 products, the DL305 uses octal addressing. That is, the I/O point addressing does not include any "8s" or "9s" . The DL305 is primarily different in that it uses slot addressing. The addresses are assigned to the I/O slots and do not depend on the type of module installed (input vs. output). Also, the addresses are not sequential on 16-point modules. For example, a 16-point module in slot 0 (the first I/O slot) would have I/O addresses 000-007 for the first eight points and 100-107 for the next eight points.
There are also certain restrictions to consider when designing your system. Most of these situations arise when 16point modules are used, or when expansion bases must be added to the system.
The diagrams on this and the following page illustrate the I/O base/addressing combinations that are possible when designing a system.

5-slot base example configurations

8-slot base, 5 -slot expansion, 8 -pt. I/0

8-slot hase, 16-pt. I/0

10-slot base example configurations

*NOTE: Regardless of base size, if a 16-pt. module is used in Slot 6 for the D3-330 CPU, 160 through 167 will not be available for control-ready assignments. If a 16-pt. module is used in Slot 6 and/or Slot 7 for a D3-340 CPU, 160-167 and/or 170-177 are not available for control relay assignments.

D3-350 Addressing

Using "-1" bases

The D3-350 CPU can be installed in legacy DL305 bases or the "-1" bases. When installed in one of the legacy bases, or if the bases are mixed, the addressing scheme and module placement restrictions follow that of the D3-340 CPU. Refer to the previous pages for more detailed information. Note: These I/O addressing configurations are for the latest style bases (-1 on the end of the part number). If you are using an older series base, refer to the User's Manual appendix for correct addressing.

I/O addressing

When the D3-350 CPU is installed in a "- 7 " base and all expansion bases are also "-1" bases, the addressing scheme is very simple. $16 \mathrm{I} / \mathrm{O}$ points are assigned to each slot. This applies even if the slot contains an 8 -point module or if the slot is empty. Expansion base addresses follow in succession from the previous base. Input modules are assigned addresses XO through X777. Output modules are assigned address Y0 through Y777.

D3-350 Addressing

8-slot base example configurations

10-slot base example configurations

DL305 Base Specifications

	13-05B-1 <-->	13-05BDC <-->	13-08B-1 <-->	13-10B-1 <-->	D3-10BDC <-->
Number of Slots	5	5	8	10	10
Local CPU Base	Yes	Yes	Yes	Yes	Yes
Expansion Base	Yes CPU base and two expansion bases. If CPU base is 5-slot, then the expansion bases must be 5-slot also.	Yes CPU base and two expansion bases. If CPU base is 5 -slot, then the expansion bases must be 5-slot also.	Yes (D3-350 only) CPU base and two expansion bases. If CPU base is 8 -slot, then the expansion bases must be 8 -slot or 5 -slot	Yes CPU base and one expansion bases. If CPU base is $10-\mathrm{slot}$, then the expansion bases must be 10-slot or 5 -slot	Yes CPU base and one expansion bases. If CPU base is $10-$ slot, then the expansion bases must be 10-slot or 5-slot.
Input Voltage Range	$\begin{aligned} & 85-264 \mathrm{VAC} \\ & 47-63 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 20.5-30VDC } \\ & <10 \% \text { ripple } \end{aligned}$	$\begin{aligned} & 85-264 \mathrm{VAC} \\ & 47-63 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 85-264 \mathrm{VAC} \\ & 47-63 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { 20.5-30VDC } \\ & <10 \% \text { ripple } \end{aligned}$
Base Power Consumption	85 VA Max	48 Watts	85VA Max	85VA Max	65 Watts
Inrush Current Max.	30A 1ms	30A	30 A 1 ms	30A 1ms	30A
Dielectric Strength	1500VAC for one minute between terminals of AC P/S, run output, common, 24VDC	1500VAC for one minute between 24VDC input terminals and run output	1500VAC for one minute between terminals of $\mathrm{AC} P / \mathrm{S}$, run output, common, 24VDC	2000VAC for one minute between terminals of $A C P / S$, run output, common, 24VDC	1500VAC for one minute between 24VDC input terminals and run output
Insulation Resistance	>10Mohm at 500VDC	>10Mohm at 500VDC	>10Mohm at 500VDC	$>10 \mathrm{Mohm}$ at 500VDC	>10Mohm at 500VDC
Power Supply Output (Voltage Ranges and Ripple)	$\begin{aligned} & \text { (5VDC) } 4.75-5.25 \mathrm{~V} \\ & 5 \% \text { ripple } \\ & \text { (9VDC) } 8.5-10 \mathrm{~V} \\ & 5 \% \text { ripple } \\ & \text { (24VDC) } 20-28 \mathrm{~V} \\ & 5 \% \text { ripple } \end{aligned}$	$\begin{aligned} & \text { (5VDC) 4.75-5.25V } \\ & 5 \% \text { ripple } \\ & \text { (9VDC) } 8.5-10 \mathrm{~V} \\ & 5 \% \text { ripple } \\ & \text { (24VDC) 20-28V } \\ & 5 \% \text { ripple } \end{aligned}$	$\begin{aligned} & \text { (5VDC) 4.75-5.25V } \\ & \text { 5\% ripple } \\ & \text { (9VDC) } 8.5-10 \mathrm{~V} \\ & 5 \% \text { ripple } \\ & \text { (24VDC) 20-28V } \\ & 5 \% \text { ripple } \end{aligned}$	$\begin{aligned} & \text { (5VDC) } 4.75-5.25 \mathrm{~V} \\ & 5 \% \text { ripple } \\ & \text { (9VDC) } 8.5-10 \mathrm{~V} \\ & 5 \% \text { ripple } \\ & (24 \mathrm{VDC}) 20-28 \mathrm{~V} \\ & 5 \% \text { ripple } \end{aligned}$	$\begin{aligned} & \text { (5VDC) } 4.75-5.25 \mathrm{~V} \\ & 5 \% \text { ripple } \\ & \text { (9VDC) } 8.5-10 \mathrm{~V} \\ & 5 \% \text { ripple } \\ & \text { (24VDC) 20-28V } \\ & 5 \% \text { ripple } \end{aligned}$
5 VDC Current Supplied	.7A	1.4 A	1.0A	1.0A	1.4 A
9 VDC Current Supplied	2.0 A	0.8A	2.0 A	2.0A	1.7A
24 VDC Current Supplied	0.5A	0.5A	0.5A	0.5A	0.5A
Auxiliary 24 VDC Output	100 mA max	None	100 mA max	100 mA max	None
Run Relay	250VAC 4A (resistive load)	$\begin{aligned} & \text { 250VAC } \\ & \text { 4A (resistive load) } \end{aligned}$	250VAC 4A (resistive load)	$\begin{aligned} & \text { 250VAC } \\ & \text { 4A (resistive load) } \end{aligned}$	$\begin{aligned} & \text { 250VAC, } \\ & \text { 4A (resistive load) } \end{aligned}$
Fuses	2A (250V) Non-replaceable	4A (250V) User-replaceable D3-FUSE-3 <--->	2A (250V) Non-replaceable	2A (250V) Non-replaceable	4A (250V) User-replaceable D3-FUSE-3 <--->
Dimensions W/H/D	$11.42 \times 4.85 \times 4.41 \mathrm{in}$. (290x123x112 mm)	$11.42 \times 4.85 \times 4.41$ in. (290×123×112 mm	$15.55 \times 4.85 \times 4.41$ in. (395x123x112 mm)	$18.3 \times 4.85 \times 4.41$ in. (465x123×112 mm)	$18.34 \times 4.85 \times 4.41 \mathrm{in}$. $(465 \times 123 \times 112 \mathrm{~mm})$
Weight	370z. (1050g)	340z. (964g)	440z. (1250g)	51.10z. (1450g)	50.50z. (1432g)

Power Budget

Managing your power resource

The I/O configuration depends on your choice of I/O modules, bases and I/O location. When determining the types and quantity of I/O modules you will be using, it's important to remember there is a limited amount of power available from the power supply.
The chart on the next page indicates the power supplied and used by each DL305 device. The adjacent chart shows an example of how to calculate the power used by your particular system. These two charts should make it easy for you to determine if the devices you have chosen fit within the power budget of your system configuration.
If the I/O you have chosen exceeds the maximum power available from the power supply, you can resolve the problem by shifting some of the modules to an expansion base.

Use ZIPLinks to reduce power requirements

If your application requires a lot of relay outputs, consider using the ZipLink AC or DC relay output modules. These modules can switch high current (10A) loads without putting a load on your base power budget. Refer to the Wiring Solutions section in this catalog for more information.
This logo is placed next to I / O modules that are supported by the ZIPLink connection systems. See the I/O module specifications at the end of this section.

WARNING: It is extremely important to calculate the power budget correctly. If you exceed the power budget, the system may operate in an unpredictable manner, which may result in a risk of personal injury or equipment damage.

Example: how to calculate your power usage

The following example shows how to calculate the power budget for the DL305 system. The examples are constructed around a single 5 -slot base using the devices shown. It is recommended you construct a similar table for each base in your DL305 system.

1. Using a chart similar to the one below, fill in column 2.
2. Using the tables on the opposite page, enter the current supplied and used by each device (columns 3, 4, and 5). Devices which fall into the "Other" category (Row D) are devices such as the Handheld Programmer or a Data Communication Unit, which also have power requirements, but do not directly plug into the base.
3. Add the current used by the system devices (columns 3, 4, and 5), starting with Slot 1 , then put the total in the row labeled "Maximum Current Required" (Row E).
4. Subtract the row labeled "Maximum Current Required" (Row E), from the row labeled "Current Supplied" (Row B). Place the difference in the row labeled "Remaining Current" (Row F).
5. If "Maximum Current Required" is greater than "Current Supplied" in columns 3, 4 or 5, the power budget will be exceeded. It will be unsafe to use this configuration and you will need to restructure your I/O configuration.

DL305 Power Requirements

This section shows the amount of power supplied by the base power supplies and the amount of power used by each DL305 device. Note the base power supplies provide three internal voltages ($5 \mathrm{~V}, 9 \mathrm{~V}, 24 \mathrm{~V}$). The chart shows how much power from each of these power sources is required for each DL305 device. Use this information when calculating the power budget for your system.
In addition to the three internal power sources, the DL305 bases provide an external power connection. There is 24 VDC available from the 24 VDC output terminals on the bases (except D3-05BDC and D3-10BDC).
The 24 VDC can be used to power external devices or DL305 modules that require external 24 VDC. The power used from this external 24 VDC output reduces the internal system 24 VDC that is available to the modules by an equal amount. When using the 24 VDC output at the base terminal, it is recommended that 100 mA not be exceeded.

Power Supplied				
Device	5V(mA)	9V(mA)	24V(mA)	24 V (mA)
$\begin{array}{\|l\|} \hline \text { D3-05B-1 } \\ \text { D3-08B-1 } \\ \text { D3-10B-1 } \\ \text { D3-05BDC } \\ \text { D3-10BDC } \\ \text { D3-05B-NR } \\ \text { D3-08B-NR } \\ \text { D3-05BDC-NR } \end{array}$	$\begin{aligned} & 900 \\ & 900 \\ & 900 \\ & 900 \\ & 900 \\ & 900 \\ & 900 \\ & 900 \end{aligned}$	$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & \\ & 2000 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \\ & 500 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & \text { None } \\ & \text { None } \\ & 100 \\ & 100 \\ & \text { None } \end{aligned}$
Power Consumed				
Device	5V(mA)	9V(mA)	24V(mA)	External required
Relay Output Modules				
$\begin{aligned} & \text { D3-08TR } \\ & \text { F3-08TRS-1 } \\ & \text { F3-08TRS-2 } \\ & \text { D3-16TR } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 360 \\ & 296 \\ & 296 \\ & 480 \end{aligned}$	$\left(\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	$\left(\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$
Analog Temperature and Thermocouple Modules				
$\begin{aligned} & \text { F3-04ADS } \\ & \text { F3-08AD-1 } \\ & \text { F3-08THM-n } \\ & \text { F3-16AD } \\ & \text { F3-04DA-1 } \\ & \text { F3-04DAS } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 183 \\ & 45 \\ & 50 \\ & 55 \\ & 144 \\ & 154 \end{aligned}$	$\begin{aligned} & 50 \\ & 55 \\ & 34 \\ & 65 \\ & 108 \\ & 145 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Communications and Networking				
$\begin{aligned} & \text { D3-232 DCU } \\ & \text { D3-422 DCU } \\ & \text { FA-UNICON } \\ & \text { D3- DCM } \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 300 \end{aligned}\right.$	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	Optional 5V@500mA Optional 5V@500mA 24V or 5V@100mA 0
Specialty Modules				
$\begin{array}{\|l} \hline \text { D3-08SIM } \\ \text { D3-HSC } \\ \text { D3-TCSU } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 40 \end{aligned}$	$\begin{aligned} & 10 \\ & 70 \\ & 5 \end{aligned}$	$\begin{aligned} & 112 \\ & 0 \\ & 0 \end{aligned}$	0
Programming				
D3-HP D3-HPP D2-HP	$\begin{aligned} & 50 \\ & 50 \\ & 200 \end{aligned}$	$\begin{aligned} & 50 \\ & 50 \\ & 0 \end{aligned}$	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right.$	$\left[\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right.$
Specialty CPUs				
$\begin{aligned} & \text { F3-OMUX-1 } \\ & \text { F3-OMUX-2 } \\ & \text { F3-PMUX } \\ & \text { F3-RTU } \end{aligned}$	$\begin{aligned} & 409 \\ & 262 \\ & 455 \\ & 416 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 150 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Operator Interface				
DV-1000 C-more Micro-Graphic	$\begin{aligned} & 150 \\ & 210 \end{aligned}$	$\left[\begin{array}{l} 0 \\ 0 \end{array}\right.$	$\left[\begin{array}{l} 0 \\ 0 \end{array}\right.$	$\left[\begin{array}{l} 0 \\ 0 \end{array}\right.$

Dimensions and Installation

It is important to understand the installation requirements for your DL305 system. This will help ensure that the DL305 products operate within their environmental and electrical limits.

Plan for safety

This catalog should never be used as a replacement for the user manual. The user manuals, D3-USER-M and D3-350-M (available for download from our web site), contain important safety information that must be followed. The system installation should comply with all appropriate electrical codes and standards.

Base dimensions and mounting orientation

Use the diagrams to the right to make sure the DL305 system can be installed in your application. DL305 bases must be mounted horizontally to ensure proper airflow for cooling purposes. It is important to check these dimensions against the conditions required for your application. For example, it is recommended that you leave $1.5^{\prime \prime}$ depth for ease of access and cable clearance. However, your distance may be greater or less. Also, check the installation guidelines for the recommended cabinet clearances.

Specification	Rating
Storage Temperature	$-4^{\circ} \mathrm{F}-158^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Ambient Operating Temperature	$32^{\circ} \mathrm{F}-131^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.55^{\circ} \mathrm{C}\right)$
Ambient Humidity	$30 \%-95 \%$ relative humidity (non-condensing)
Vibration Resistance	MIL STD 810 C, Method 514.2
Shock Resistance	MIL STD810, Method 516.2
Noise Immunity	NEMA (ICS3-304)

DL305 mounting depths

Data Communications Module

D3-DCM
 <->

The DL305 Data Communications Module (DCM) is a general purpose communications interface for the DL305 family of PLCs. This module only works with the D3-350 CPUs. It will not work with the D3-330 or D3-340 CPUs or in DCpowered bases. You must use the" -1 " type base. The DCM module is primarily used for three purposes:

- Extra general purpose communications port to connect a personal computer, operator interface, etc.
- Network interface to a DirectNET network
- Network interface to a MODBUS RTU protocol
The D3-350 CPU offers a built-in communication port. However, if more communication ports are needed, they can easily be added by installing Data Communication Modules. Any device that can be connected to the communication port of a D3-350 CPU can be connected to the DCM. However, make sure the device has a DL305-compatible driver. This allows additional connections of devices, such as operator interfaces, personal computers, etc. Since the DCM does not require any programming, you can set the DCM communication parameters, connect the cables, and start transferring data.

Data Communications Module

DirectNET network interface

The DCM can be used as a network interface for applications requiring data to be shared between PLCs, or between PLCs and an intelligent device such as a host computer. The DCM connects easily to DirectNET. This network allows you to upload or download virtually any type of system data including Timer/Counter data, I/O information, and V-memory information from most DirectLOGIC or compatible PLCs. The DCM allows the D3-350 CPU to function as a network master or as a network slave.

Network master

The DCM allows the D3-350 to serve as a master of a DirectNET Network. The DCM takes communication requests issued from the CPU's RLL program (the network part of the program can be very simple, as few as 7 words) and automatically converts these requests into network commands to read data from or write data to a network slave station. This capability also allows a simple peer-to-peer configuration of two D3-350 systems, each with a DCM. In this scenario, either station can initiate the request for data.
Note: The F1-130 CPUs and the D2-230 do not support DirectNet.

Network slave

The D3-350 CPU has built-in ports that support the DirectNET protocol. If these ports are occupied, a DCM can be added to provide an additional network slave port. In this case, the DCM "listens" to the network for any messages containing the DCM's address. The DCM deciphers the network commands, carries out the request to read or write data and sends confirmation and/or information to the master station. Since the DCM does not require any programming, you can set the DCM communication parameters, connect the cables and start transferring data.

Low-cost

MODBUS interface
The DCM can be used as a slave station interface to connect your D3-350 system to the MODBUS network using the MODBUS RTU protocol. The host system must be capable of issuing the MODBUS commands to read or write the appropriate data. Since the D3-350 CPU can act as a MODBUS master, it is now very easy to implement an entire D3-350 control scheme using the MODBUS RTU protocol.

Data Communications Units

D3-232-DCU <--->
 D3-422-DCU <--->

The DL305 Data Communications Unit (DCU) is a general purpose communications interface for the DL305 family. This unit is used with the D3-330 CPU for the following reasons:

- As a general purpose communications port to connect a personal computer, operator interface, etc.
- Network interface to a DirectNET network.
- The DCU is not necessary for the D3-340 or D3-350 CPUs since they have built-in communication ports.

Mode 1:
 general purpose port

You can use the DCU as a general purpose communication port to connect your DL305 to various devices such as an operator interface or personal computer. The DCU does not require any programming. You can simply set the DCU communication parameters, connect the appropriate RS232C or RS422 communication cables, and start programming or transferring data. Typically this application would use the RS232C version of the DCU (D3-232-DCU).

The FA-UNICON Universal Converter provides an inexpensive way to convert D3-422-DCU RS-422 signals into RS-232C signals for connection to a PC. This kit contains the converter itself and several specialty connectors and cables that make it easy to use and install. The converter requires an external power source for operation.
The FA-UNICON can also be used with GE IC610CCM105 and TI 305-02DM RS-422 DCU units.

Specifications	
Unit Type	Intelligent
Units per CPU	One, direct connect to CPU
Communications	RS232C with D3-232-DCU RS422 with D3-422-DCU DirectNETTM, Baud rate selectable from 300 to 19.2K baud. Odd or No parity. HEX or ASCII mode.
Field Wiring Connector	25-Pin D-shell connector
Internal Power Consumption	500 mA from 5VDC maximum. Supplied by base power supply or external supply.
Operating Environment	$0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ ($32^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$), 5% to 95% humidity (non-condensing)
Manufacturer	Koyo Electronics

 and protocol parameters

Mode 2:
 DirectNET network interface

Communication port Handheld programmer connector

Typically this application would use the RS422 version of the DCU (D3-422-DCU).

The DCU can be used as a network inter-
face for applications requiring data to be shared between PLCs, or between PLCs and an intelligent device such as a host computer. The DCU supports DirectNET protocol (often called HostLink or CCM). Since most of our product families support this protocol, you can easily build a simple network that allows you to upload or download virtually any type of system data, including Timer/Counter data, I/O information, and V-memory information.

RS422 DirectNET Network

DirectNET slaves

The FA-UNICON contains the following items:

- RS-232/422 converter
- 25-pin male-to-male ģender changer
- 25-pin male to RJ12 6P6C connector
- 3' cable, RJ12 6-pin pluģ to RJll 4-pin pluğ
- 7' cable with RJ12 6-pin plug to RJ12 6-pin
- DB9 Female to RJ12 6P6C connector

FA-UNICON Specifications

- Supply voltage: 22-26 VDC or 5 VDC
- No load current: 65 mA
- Max. current: 100 mA
- Operating temp: $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$ for 24 V supply, $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ for 5 V supply

2/RINK Wiring Solutions
 VAUTOMATIONDIRECTẸ

Wiring Solutions using the ZIPLink Wiring System

ZIPLinks eliminate the normally tedious process of wiring between devices by utilizing prewired cables and DIN rail mount connector modules. It's as simple as plugging in a cable connector at either end or terminating wires at only one end. Prewired cables keep installation clean and efficient, using half the space at a fraction of the cost of standard terminal blocks. There are several wiring solutions available when using the ZIPLink System ranging from

PLC I/O-to-ZIPLink Connector Modules that are ready for field termination, options for connecting to third party devices, GS, DuraPulse and SureServo Drives, and specialty relay, transorb and communications modules. Pre-printed I/O-specific adhesive label strips for quick marking of ZIPLink modules are provided with ZIPLink cables. See the following solutions to help determine the best ZIPLink system for your application.

Solution 1: DirectLOGIC, CLICK and Productivity3000

 I/O Modules to ZIPLink Connector ModulesWhen looking for quick and easy I/O-to-field termination, a ZIPLink connector module used in conjunction with a prewired ZIPLink cable, consisting of an I/O terminal block at one end and a multi-pin connector at the other end, is the best solution.

Using the PLC I/O Modules to ZIPLink Connector Modules selector tables located in this section,

1. Locate your I/O module/PLC.
2. Select a ZIPLink Module.
3. Select a corresponding ZIPLink Cable.

Solution 2: DirectLOGIC, CLICK and Productivity3000 I/O Modules to 3rd Party Devices

When wanting to connect I/O to another device within close proximity of the I/O modules, no extra terminal blocks are necessary when using the ZIPLink Pigtail Cables. ZIPLink Pigtail Cables are prewired to an I/O terminal block with color-coded pigtail with soldered-tip wires on the other end.

Using the I/O Modules to 3rd Party Devices selector tables located in this section,

1. Locate your PLC I/O module.
2. Select a ZIPLink Pigtail Cable that is compatible with your 3rd party device.

Solution 3: GS Series and DuraPulse Drives Communication Cables

Need to communicate via Modbus RTU to a drive or a network of drives?
ZIPLink cables are available in a wide range of configurations for connecting to PLCs and SureServo, SureStep, Stellar Soft Starter and AC drives. Add a ZIPLink communications module to quickly and easily set up a multi-device network.

Using the Drives Communication selector tables located in this section,

1. Locate your Drive and type of communications.
2. Select a ZIPLink cable and other associated hardware.

Solution 4: Serial Communications Cables

ZIPLink offers communications cables for use with DirectLOGIC, CLICK, and Productivity 3000 CPUs, that can also be used with other communications devices. Connections include a 6-pin RJ12 or 9-pin, 15-pin and 25pin D-sub connectors which can be used in conjunction with the RJ12 or D-Sub Feedthrough modules.

Using the Serial Communications Cables selector table located in this section,

1. Locate your connector type
2. Select a cable.

Solution 5: Specialty ZIPLink Modules

For additional application solutions, ZIPLink modules are available in a variety of configurations including stand-alone relays, 24 VDC and 120VAC transorb modules, D-sub and RJ12 feedthrough modules, communication port adapter and distribution modules, and SureServo 50-pin I/O interface connection.

Using the ZIPLink Specialty Modules selector table located in this section,

1. Locate the type of application.
2. Select a ZIPLink module.

Solution 6: ZIPLink Connector Modules to 3rd Party Devices

If you need a way to connect your device to terminal blocks without all that wiring time, then our pigtail cables with color-coded soldered-tip wires are a good solution. Used in conjunction with any compatible ZIPLink Connector Modules, a pigtail cable keeps wiring clean and easy and reduces troubleshooting time.

Using the Universal Connector Modules and Pigtail Cables table located in this section,

1. Select module type.
2. Select the number of pins.
3. Select cable.

Z/PINK PLC I/O Modules to ZIPLink

DL305 PLC Input Module alimink Sclector				
PLC		2/ilink		
Input Module	\# of Terms	Component	Module Part No.	Cable Part No.
D3-08ND21	10	See Note 1		
D3-16ND2-1	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
D3-16ND2F	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
D3-16ND3F	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
D3-08NA-11	10	See Note 1		
D3-08NA-21	10	See Note 1		
D3-16NA	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
D3-08NE31	10	See Note 1		
D3-16NE3	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
		Sensor	ZL-LTB16-24	ZL-D3-CBL18*

DL305 PLC Analog Module a/imink Selector				
PL.		2/ilink		
Analog Module	\# of Terms	Component	Module	Cable
F3-04ADS	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
F3-08AD-1	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
F3-16AD	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
F3-04DA-1	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
F3-04DAS	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
F3-08THM-J	T/C Wire Only	See Note 3		
F3-08THM-K3	T/C Wire Only	See Note 3		

Note: ZIPLINK Connector Modules specifications follow the Compatibility Matrix tables. ZIPLink Cables specifications are at the end of this ZIPLInk SECTION.

DL305 PLCC Output Module T/isink Selector				
PLC		7/iLink		
$\begin{array}{\|l\|} \hline \text { Output } \\ \text { Module } \end{array}$	\# of Terms	Component	Module Part No.	Cable Part No.
D3-04TD1 ${ }^{1}$	10	See Note 1		
D3-08TD1 ${ }^{1}$	10	See Note 1		
D3-08TD2 ${ }^{1}$	10	See Note 1		
D3-16TD1-1	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
		Fuse	ZL-RFU204	ZL-D3-CBL18*
		Relay (sinking)	ZL-RRL16-24-1	ZL-D3-CBL18*
D3-16TD2	18	Feedthrough	ZL-RTB2O	ZL-D3-CBL18*
		Fuse	ZL-RFU204	ZL-D3-CBL18*
		Relay (sourcing)	ZL-RRL16-24-2	ZL-D3-CBL18*
D3-04TAS ${ }^{1}$	10	See Note 1		
F3-08TAS-1	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
D3-08TA-1	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
D3-08TA-21	10	See Note 1		
F3-16TA-2	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
		Fuse	ZL-RFU204	ZL-D3-CBL18*
D3-16TA-2	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
		Fuse	ZL-RFU204	ZL-D3-CBL18*
D3-08TR1	10	See Note 1		
D3-16TR ${ }^{2}$	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
		Fuse	ZL-RFU204	ZL-D3-CBL18*
F3-08TRS-12	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*
F3-08TRS-2 ${ }^{2}$	18	Feedthrough	ZL-RTB20	ZL-D3-CBL18*

* Select the cable length by replacing the * with: Blank $=0.5 \mathrm{~m},-1=1.0 \mathrm{~m}$, or $-2=2.0 \mathrm{~m}$.
${ }^{1}$ These I/O modules have non-removable terminal blocks which can be terminated using the ZL-CBL24-1P or 2P pigtail cable and the ZL-RTB20 module of the ZIPLink wiring system.
${ }^{2}$ Caution: The D3-16TR, F3-08TRS-1 and F3-08TRS-2 relay outputs are derated not to exceed $2 A$ per point and $4 A$ per common when used with the ZIPLink wiring system.
${ }^{3}$ The F3-08THM-J and F3-08THM-K modules are not supported by the ZIPLink wiring system.
${ }^{4}$ Note: Fuses ($5 \times 20 \mathrm{~mm}$) are not included. See Edison Electronic Fuse section for ($5 \times 20 \mathrm{~mm}$) fuse. 5500 and GMA electronic circuit protection for fast-acting maximum protection. S506 and GMC electronic circuit protection for time-delay performance. Ideal for inductive circuits.
To ensure proper operation, do not exceed the voltage and current rating of ZIPLink module. ZL-RFU2O = 2A per circuit; ZL-RFU40 = 400 mA per circuit.

Simulator Module

D3-08SIM Input Simulator $<\gg$	
Inputs per Module	8
Base Power Required	10 mA @ 9VDC $112 \mathrm{~mA} \mathrm{max} \mathrm{@} \mathrm{24VDC}$
OFF to ON Response	$4-15 \mathrm{~ms}$
ON to OFF Response	$4-15 \mathrm{~ms}$
Terminal Type	None
Status Indicators	Switch side
Weight	3.00 z. (85g)

DC Input Modules

D3-08N2 IC Input	
Inputs per Module	8 (current sourcing)
Commons per Module	2 (internally connected)
Input Voltage Range	$18-36 \mathrm{VDC}$
Input Voltage	Internally supplied
Peak Voltage	40 VDC
AC Frequency	N / A
ON Voltage Level	$>18 \mathrm{~V}$
OFF Voltage Level	$<3 \mathrm{~V}$
Input Impedance	1.8 Kohm
Input Current	12 mA max
Minimum ON Current	7 mA
Maximum OFF Current	3 mA
Base Power Required	9 V 10 mA max.
24V 14mA/ON pt. (112mA max)	
OFF to ON Response	$4-15 \mathrm{~ms}$
ON to OFF Response	$4-15 \mathrm{~ms}$
Terminal Types	Non-removable
Status Indicators	Field side
Weight	$4.20 z .(120 \mathrm{~g})$

D3-16N12-1 DC Input <-->	
Inputs per Module	16 (current sourcing)
Commons per Module	2 (internally connected)
Input Voltage Range	18-36VDC
Input Voltage	Internally supplied
Peak Voltage	36VDC
AC Frequency	N/A
ON Voltage Level	>19V
OFF Voltage Level	<3V
Input Impedance	1.8Kohm
Input Current	20 mA Max
Minimum ON Current	5 mA
Maximum OFF Current	1 mA
Base Power Required	9V 25mA Max 24V 14mA/ON pt. (224mA max)
OFF to ON Response	$3-15 \mathrm{~ms}$
ON to OFF Response	4-15ms
Terminal Types	Removable
Status Indicators	Field side
Weight	6.302. (180g)

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

DC Input Modules

D3-16ND2F	Fast Response Input <-->
Inputs per Module	16 (current sourcing)
Commons per Module	2 (internally connected)
Input Voltage Range	18-36VDC
Input Voltage	Internally supplied
Peak Voltage	36VDC
AC Frequency	N/A
ON Voltage Level	>19V
OFF Voltage Level	<13V
Input Impedance	1.8Kohm
Input Current	20 mA max
Minimum ON Current	5 mA
Maximum OFF Current	1 mA
Base Power Required	9 V 25 mA max 24V 14mA/ON pt. (224mA max)
OFF to ON Response	0.8ms
ON to OFF Response	0.8ms
Terminal Types	Removable
Status Indicators	Field side
Weight	6.30z. (180g)

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

DC Input Modules

F3-16ND3F DC Fast Response Input <-->

Inputs per Module	16 sink/source (jumper selectable sink/source)*
Commons per Module	2 (internally connected)
Input Voltage Range	5VDC TTL and CMOS, 12-24VDC (jumper selectable)*
Input Voltage Supplied	Internal (used with sinking loads) External (used with sourcing loads)
Peak Voltage	100VDC (35VDC Continuous)
AC Frequency	N/A
ON Voltage Level	$\begin{aligned} & \text { 3.5-5VDC @ 5VDC } \\ & \text { 10-24VDC @12-24VDC } \end{aligned}$
OFF Voltage Level	$\begin{aligned} & 0-1.5 V D C \text { @ 5VDC } \\ & 0-4 V D C @ 12-24 V D C \end{aligned}$
Base Power Required	9V 148mA max 24V 69mA max
Input Current	$\begin{aligned} & 1 \mathrm{~mA} @ 5 \mathrm{VDC} \\ & 3 \mathrm{~mA} @ 12-24 \mathrm{DC} \end{aligned}$
Input Impedance	4.7 K
OFF to ON Response	1 ms
ON to OFF Response	1 ms
Maximum Input Rate	500 Hz
Minimum ON Current	$\begin{aligned} & 0.4 \mathrm{~mA} @ 5 \mathrm{VDC} \\ & 0.9 \mathrm{~mA} @ 12-24 \mathrm{VDC} \end{aligned}$
Maximum OFF Current	$\begin{aligned} & \text { 0.8mA @ 5VDC } \\ & \text { 2.2mA @ 12-24VDC } \end{aligned}$
Terminal Type	Removable
Status Indicators	Logic side
Weight	5.402. (153g)

Jumper selected for sourcing load configuration.
An external power supply must be used in this configuration.

Selection of operating mode

The DC power is provided by the rack power supply to sense the state of the inputs when jumpers are installed for sinking type signals. Sinking type inputs are turned ON by switching the input circuit to common. Source type input signals assume the ON state until the input device provides the voltage to turn the input OFF.
The mode of operation, either 5 VDC or 12-24 VDC sink or source, for each group of circuits is determined by the position of jumper plugs on pins that are located on the bottom edge of the circuit board. There are four sets of pins (3 pins in each set), with two sets for each group of inputs. The first two sets of pins are used to configure the first 12 inputs (e.g. 0 to 7 and 100 to 103) and are labeled 12 CIRCUITS. Above the first set of pins are the labels $12 / 24 \mathrm{~V}$ and 5 V . Above the second set of pins are the labels SINK and SRC (source). To select an operating mode for the first 12 circuits, place a jumper on the two pins nearest the appropriate labels. For example, to select 24 VDC Sink input operation for the first 12 inputs, place a jumper on the two pins labeled $12 / 24 \mathrm{~V}$ and on the two pins labeled SINK. The last two sets of pins are used to configure the last 4 inputs (eg. 104 to 107) and are labeled four CIRCUITS. The operating mode selected for the last group of four inputs can be different than the mode chosen for the first group of 12 inputs. Correct module operation required that each set of three pins have a jumper installed (four jumpers total).
*NOTE: When a group of inputs is used with TTL logic, select the SINK operating mode for that group. "Standard" TTL can sink several milliamps but can source less than 1 mA .

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

* 12 Inputs are jumper selectable for 5VDC/12-24VDC and Sink Load/Source Load
4 Inputs are jumper selectable for
$5 \mathrm{VDC} / 12-24 \mathrm{VDC}$ and Snk Load/Source Load

Sinking Load Configuration

AC Input Modules

DB-08NA-1 AC Input	
Inputs per Module	8
Commons per Module	2 (isolated)
Input Voltage Range	$85-132 \mathrm{VAC}$
Input Voltage Supply	External
Peak Voltage	132 VAC
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Level	$>80 \mathrm{VAC}$
OFF Voltage Level	$<20 \mathrm{VAC}$
Input Impedance	10 K ohm
Input Current	15 mA @ 50 Hz
Minimum ON Current	8 mA
Maximum OFF Current	2 mA
Base Power Required	9 V 10 mA max 24V N/A
OFF to ON Response	$10-30 \mathrm{~ms}$
ON to OFF Response	$10-60 \mathrm{~ms}$
Terminal Types	Non-removable
Status Indicators	Field side
Weight	50 z . (140g)

IB-08NA-2 AC Input	
Inputs per Module	8
Commons per Module	2 (isolated)
Input Voltage Range	$180-265 \mathrm{VAC}$
Input Voltage Supply	External
Peak Voltage	265 VAC
AC Frequency	$50-60 \mathrm{~Hz}$
ON Voltage Level	$>180 \mathrm{VAC}$
OFF Voltage Level	$<40 \mathrm{VAC}$
Input Impedance	18 Kohm
Input Current	$13 \mathrm{~mA} @ 50 \mathrm{~Hz}$
Minimum ON Current	18 mA @ 60 Hz
Maximum OFF Current	2 mA
Base Power Required	9 V 10 mA max 24V N/A
OFF to ON Response	$5-50 \mathrm{~ms}$
ON to OFF Response	$5-60 \mathrm{~ms}$
Terminal Types	Non-removable
Status Indicators	Field side
Weight	$50 z .(140 \mathrm{~g})$

AC Input and AC/DC Input Modules

D3-16NA AC Input <-->	
Inputs per Module	16
Commons per Module	2 (isolated)
Input Voltage Range	80-132VAC
Input Voltage Supply	External
Peak Voltage	132VAC
AC Frequency	$50-60 \mathrm{~Hz}$
ON Voltage Level	>80 VAC
OFF Voltage Level	<15 VAC
Input Impedance	8 K ohm
Input Current	$\begin{aligned} & 16 \mathrm{~mA} @ 60 \mathrm{~Hz} \\ & 24 \mathrm{~mA} @ 60 \mathrm{~Hz} \end{aligned}$
Minimum ON Current	8 mA
Maximum OFF Current	1.5 mA
Base Power Required*	9 V 6.25mA max/ON pt 100 mA max
OFF to ON Response	5-50ms
ON to OFF Response	5-60ms
Terminal Types	Removable
Status Indicators	Logic side
Weight	6.40z. (189g)
*9V typical values are 4mA/ON pt., 64m	total

D3-08NE3 AC/DC Input <-->	
Inputs per Module	8 (sink/source)
Commons per Module	2 (isolated)
Input Voltage Range	20-28VACNDC
Input Voltage	External
Peak Voltage	28VACNDC
AC Frequency	${ }^{47-63 H z}$
ON Voltage Level	>20V
OFF Voltage Level	<6V
Input Impedance	1.5Kohm
Input Current	19 mA max
Minimum ON Current	10 mA
Maximum OFF Current	2 mA
Base Power Required	9V 10mA max 24V N/A
OFF to ON Response	AC: 5-50ms DC: 6-30ms
ON to OFF Response	AC/DC: $5-60 \mathrm{~ms}$
Terminal Type	Non-removable
Status Indicators	Field side
Weight	4.20z. (120g)

Points

NOTE: This module can be wired in a sourcing configuration and it will be operational except there will be no module LED indication for each input.

AC/DC Input Modules

D3-16N:3 AC/IC Input	
Inputs per Module	16 (sink/source)
Commons per Module	2 (isolated)
Input Voltage Range	$14-30 \mathrm{VACNDC}$
Input Voltage	External
Peak Voltage	30 VACNDC
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Level	$>14 \mathrm{~V}$
OFF Voltage Level	$<3 \mathrm{~V}$
Input Impedance	1.8 Kohm
Input Current	16 mA Max
Minimum ON Current	7 mA
Maximum OFF Current	2 mA
Base Power Required	$9 \mathrm{VV} 2.5 \mathrm{~mA}+4.5 \mathrm{~mA} / 0 \mathrm{~N}$ pt. (130mA max)
24V N/A	
OFF to ON Response	AC 5-30ms DC 5-25 ms
ON to OFF Response	AC 5-30ms DC 5-25 ms
Terminal Type	Removable
Status Indicators	Logic side
Weight	$602 .(170 \mathrm{~g})$

DC Output Modules

D3-04TD1 DC Output <->>	
Outputs per Module	4 (current sinking)
Commons per Module	4 (internally connected)
Operating Voltage	5-24VDC
Output Type	Field effect transistor
Peak Voltage	45VDC
AC Frequency	N/A
ON Voltage Drop	0.9 V @ 6A
Max. Current	2A/point 6A/module
Max Leakage Current	0.4 mA @ 40VDC
Max Inrush Current	6A/100ms
Minimum Load	5 mA
Base Power Required	9V $12 \mathrm{~mA} / \mathrm{pt}$ (48mA Max) 24 V 5 mA
OFF to ON Response	0.1 ms
ON to OFF Response	0.1 ms
Terminal Type	Non-removable
Status Indicators	Logic side
Weight	4.20z. (120g)
Fuses	4 (one 5A per common) user replaceable

D3-08TD1 DC Output <-->	
Outputs per Module	8 (current sinking)
Commons per Module	2 (internally connected)
Operating Voltage	5-24VDC
Output Type	NPN (open collector)
Peak Voltage	45VDC
AC Frequency	N/A
ON Voltage Drop	0.8 V @ 0.5A
Max. Current	0.5A/point 1.8/common
Max Leakage Current	0.1mA @ 40VDC
Max Inrush Current	3A/20ms 1A/100ms
Minimum Load	1 mA
Base Power Required	9V 20mA max 24V 3mA/pt (24mA Max)
OFF to ON Response	0.1 ms
ON to OFF Response	0.1 ms
Terminal Type	Non removable
Status Indicators	Logic side
Weight	4.20z. (120g)
Fuses	2 (one 3A per common) non-replaceable

Points Derating Chart

DC Output Modules

D3-087112 DC Output <-->

D3-08TI2 DC Output <-->	
Outputs per Module	8 (current sourcing)
Commons per Module	2 (internally connected)
Operating Voltage	5-24VDC
Output Type	NPN transistor (emitter follower)
Peak Voltage	40VDC
AC Frequency	N/A
ON Voltage Drop	1V @ 0.5A
Max. Current	0.5A/point 1.8A/common
Max Leakage Current	0.1mA @ 24VDC
Max Inrush Current	3A/20ms 1A/100ms
Minimum Load	1 mA
Base Power Required	9V 30mA max 24V N/A
OFF to ON Response	0.1 ms
ON to OFF Response	0.1 ms
Terminal Type	Non-removable
Status Indicators	Logic side
Weight	4.20z. (120 g)
Fuses	2 (one 3A per common) non-replaceable

D3-16TII-1 DC Output	
Outputs per Module	16 (current sinking)
Commons per Module	2 (internally connected)
Operating Voltage	$5-24 \mathrm{VDC}$
Output Type	NPN transistor (open collector)
Peak Voltage	45 VDC
AC Frequency	N / A
ON Voltage Drop	2 V @ 0.5A
Max. Current	$0.5 \mathrm{~A} /$ point 2A/common
Max Leakage Current	0.1 mA @ 40VDC
Max Inrush Current	$3 \mathrm{~A} / 20 \mathrm{~ms} 1 \mathrm{~A} / 100 \mathrm{~ms}$
Minimum Load	1 mA
Base Power Required	9 gV (40mA max) 3mA+2.3mA/ON pt.
24V 6mA/ON pt. (96mA max)	
OFF to ON Response	0.1 ms
ON to OFF Response	0.1 ms
Terminal Type	Removable
Status Indicator	Logic side
Weight	$5.60 z .(160 \mathrm{~g})$
Fuses	2 (one 3A per common) non-replaceable

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

DC Output Modules

D3-16T12 DC Output <-->	
Outputs per Module	16 (current sourcing)
Commons per Module	2 (isolated)
Operating Voltage	5-24VDC
Output Type	NPN transistor (emitter follower)
Peak Voltage	40VDC
AC Frequency	N/A
ON Voltage Drop	1.5 V @ 0.5A
Max. Current	0.5A/point 3A/common
Max Leakage Current	0.01mA @ 40VDC
Max Inrush Current	3A/20ms 1A/100ms
Minimum Load	1 mA
Base Power Required	9V (180mA max) $7.5 \mathrm{~mA} / \mathrm{ON}$ pt. 24V N/A
OFF to ON Response	0.1 ms
ON to OFF Response	0.1ms
Terminal Type	Removable connector
Status Indicators	Logic side
Weight	7.10z.(210g)
Fuses	2 (one 5A per common) non-replaceable

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

AC Output Modules

D3-04TAS AC Output	
Outputs per Module	4
Commons per Module	4 (isolated)
Operating Voltage	$80-265 \mathrm{VAC}$
Output Type	Triac
Peak Voltage	265 VAC
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Drop	1.5 VAC @ 2A
Max. Current	$2 \mathrm{~A} /$ point 2A/common
Max Leakage Current	7 mA @ 220VAC 3.5 mA @ 110VAC
Max Inrush Current	20 A for 16ms 10 A for 100ms
Minimum Load	10 mA
Base Power Required	$9 \mathrm{~V} 12 \mathrm{~mA} \mathrm{max} \mathrm{24V} \mathrm{n/A}$
OFF to ON Response	1 ms max
ON to OFF Response	10 ms max
Terminal Type	Non-removable
Status Indicators	Logic side
Weight	6.40 z . (180g)
Fuses	4 (1 per common) 3A Order D3-FUSE-2 (5 per pack) <--->

F3-08TAS-1 AC Output <->	
Outputs per Module	8 (1500V point to point isolation)
Commons per Module	8 (isolated)
Operating Voltage	20-125VAC
Output Type	SSR (Triac with zero cross-over)
Peak Voltage	140VAC
AC Frequency	47-63Hz
ON Voltage Drop	1.6V(rms) @ 1.5A
Maximum Current	1.5A/point
Maximum Leakage Current	0.7mA(rms)
Max Inrush Current	15A for 20ms 8 A for 100 ms
Minimum Load	50 mA
Base Power Required	9V 25mA/ON pt (200mA max), 24V N/A
OFF to ON Response	1ms max
ON to OFF Response	9ms max
Terminal Type	Removable
Status Indicators	Logic side
Weight	6.30z. (177g)
Fuses	8 (1 per common) 5A, 125V fast blow Order D3-FUSE-4 (5 per pack) <--->

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

AC Output Modules

D3-08TA-1 AC Output <-->

Outputs per Module	8
Commons per Module	2 (isolated)
Operating Voltage	$80-265 \mathrm{VAC}$
Output Type	Triac
Peak Voltage	265 VAC
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Drop	1.5 VAC @ 1A
Max. Current	$1 \mathrm{~A} /$ point 3A/common
Max Leakage Current	1.2 mA @ 220VAC
0.52 mA @ 110VAC	

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

D3-08TA-2 AC Output <-->	
Outputs per Module	8
Commons per Module	2 (isolated)
Operating Voltage	80-265VAC
Output Type	Triac
Peak Voltage	265VAC
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Drop	1.5 VAC @ 1A
Max. Current	1A/point 3A/common
Max Leakage Current	1.2 mA @ 220VAC 0.52 mA @110VAC
Max Inrush Current	10A for 16ms 5A for 100ms
Minimum Load	25 mA
Base Power Required	9V $20 \mathrm{~mA} / \mathrm{ON}$ pt. (160 mA Max) $24 \mathrm{~V} \mathrm{~N} / \mathrm{A}$
OFF to ON Response	1 ms max
ON to OFF Response	8.33ms max
Terminal Type	Non-removable
Status Indicators	Logic side
Weight	6.402. (180g)
Fuses	2 (one 5A per common) non-replaceable

AC Output Modules

F3-16TA-2 AC Output <-->	
Outputs per Module	16
Commons per Module	2 (isolated)
Operating Voltage	20-125VAC
Output Type	SSR Array (TRIAC)
Peak Voltage	140VAC
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Drop	1.1VAC @ 1.1A
Max. Current	1.1A/point
Max Leakage Current	0.7mA @ 125VAC
Max Inrush Current*	15 A for 20 ms 8A for 100ms
Minimum Load	50 mA
Base Power Required	9V $14 \mathrm{~mA} / \mathrm{ON}$ pt. 250mA Max. 24V N/A
OFF to ON Response	8 ms max
ON to OFF Response	8 ms max
Terminal Type	Removable
Status Indicators	Logic side
Weight	7.702. (218g)
Fuses (One spare fuse included)	4 (One 5 A 125 V fast blow per each group of four outputs) Order D3-FUSE-4 (5 per pack) <-->

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

Relay Output Modules

D3-08TR Relay Output <-->	
Outputs per Module	8
Commons per Module	2 (isolated)
Operating Voltage	5-265VAC 5-30VDC
Output Type	Form A (SPST)
Peak Voltage	265VAC/30VDC
AC Frequency	${ }^{47-63 H z}$
ON Voltage Drop	N/A
Max. Current	4A/point AC 5A/point DC 6A/common
Max Leakage Current	1 mA @ 220VAC
Max Inrush Current	5A
Minimum Load	5 mA @ 5V
Base Power Required	9V 45mA/ON pt. (360 mA max) 24 V N/A
OFF to ON Response	5 ms
ON to OFF Response	5 ms
Terminal Type	Non-removable
Status Indicators	Logic side
Weight	70z. (200g)
Fuses	2 (one 10A per common) Order D3-FUSE-5 (5 per pack) <--->

D3-16TR Relay Output <->>	
Outputs per Module	16
Commons per Module	2 (isolated)
Operating Voltage	5-265VAC 5-30 VDC
Output Type	16 Form A (SPST)
Peak Voltage	265VAC/30VDC
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Drop	N/A
Max. Current	2A/point AC/DC (resistive) $8 \mathrm{~A} /$ common AC/DC*
Max Leakage Current	0.1mA @ 22OVAC
Max Inrush Current	2A
Minimum Load	5 mA @ 5V
Base Power Required	9V 30mA/ON pt. (480 mA max) 24 V N/A
OFF to ON Response	12 ms
ON to OFF Response	12 ms
Terminal Type	Removable
Status Indicators	Logic side
Weight	8.50z. (248g)
Fuses	None

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.
Note: When used with the ZIPLink wiring system, relay outputs are derated not to
 exceed 2 Amps per point max.

Relay Output Modules

F3-08T18-1	Relay Output <-->
Outputs per Module	8
Commons per Module	8 (isolated)
Operating Voltage*	$\begin{aligned} & \text { 12-125VAC } \\ & \text { 125-250VAC (requires external fuses) } \\ & \text { 12-30VDC } \end{aligned}$
Output Type	6 Form A (SPST), 2 Form C (SPDT)
Max Current (resistive)	10A/point AC/DC, 32A/module AC/DC*
Max leakage Current	N/A
Max Inrush Current	10A inductive
Minimum Load	100mA @ 12VDC
Base Power Required	$\begin{aligned} & \text { 9V 37mA/ON pt., } \\ & \text { (296mA max), } 24 \mathrm{~V} / \mathrm{A} \end{aligned}$
OFF to ON Response	13 ms max
ON to OFF Response	9ms max
Terminal Type	Removable
Status Indicators	Logic side
Weight	8.902. (252 g)
Fuses	8 fuses (10A, 125V), Non-replaceable
Peak Voltage	265VAC/120VDC
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Drop	N/A

* Caution: the ZIPLink wiring system is rated at 2 Amps per I/O point and 4 Amps per common, therefore the F3-08TRS-1 relay outputs are derated to 2 Amps per point and 4 Amps per common when used with the ZIPLink wiring system.

Note: Maximum DC voltage rating is 120VDC at . 5 Amp, 30,000 cycles typical. Motor starters up to and including NEMA size 4 can be used with this module.

Derating Chart

* Caution: the ZIPLink wiring system is rated at 2 Amps per I/O point and 4 Amps per common, therefore the D3-16TR relay outputs are derated to 2 Amps per point and 4 Amps per common when used with the ZIPLink wiring system.

rypical Rolay Lific			
Max. Resistive or Inductive Inrush Load Current	Operating Voltage		
	28 VDC	120 VAC	240 VAC
$1 / 4 \mathrm{HP}$		25 K	
10.0 A	50 K	50 K	
5.0 A	200 K	100 K	
3.0 A	325 K	125 K	50 K
.05 A	$>50 \mathrm{M}$		

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

Note: When used with the ZIPLink wiring system, relay outputs are derated not to exceed 2 Amps per point max.

Outputs 1-6

Relay Output Modules

F3-08TRS-2 Relay Output $\langle\cdots$	
Outputs per Module	8
Commons per Module	8 (isolated)
Operating Voltage*	$12-250 \mathrm{VAC} 12-30$ VDC
Output Type	6 Form A (SPST), 2 Form C (SPDT)
Peak Voltage	$265 \mathrm{VAC/} 120 \mathrm{VDC}$
AC Frequency	$47-63 \mathrm{~Hz}$
ON Voltage Drop	N/A
Max Current (Resistive)	$4 \mathrm{~A} / \mathrm{point} \mathrm{AC/DC}, \mathrm{32A/module} \mathrm{AC/DC*}$
Max Leakage Current	N/A

Max Inrush Current	10A inductive
Minimum Load	100mA @ 12VDC
Base Power Required	9V 37mA/ON pt. (296 mA Max), 24V N/A
OFF to ON Response	13 ms max
ON to OFF Response	9 ms max
Terminal Type	Removable
Status Indicators	Logic side
Weight	90z. (255 g)
Fuses	8 fuses (10A, 125V), replaceable Order D3-FUSE-6 (5 per pace) <---> or use 19379-K-10A Wickman

* Caution: the ZIPLink wiring system is rated at 2 Amps per I/O point and 4 Amps per common, therefore the F3-08TRS-2 relay outputs are derated to 2 Amps per point and 4 Amps per common when used with the ZIPLink wiring system.
Note: Maximum DC voltage rating is 120VDC at 0.5 Amp, 30,000 cycles typical. Motor starters up to and including NEMA size 3 can be used with this module.

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

Expected mechanical relay life is 100 million operations.

Analog Input Modules

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

Note1: Connect unused voltage or current inputs to OVDC at terminal block or leave current jumper installed (see Channel 3).
Note 2: A Series 217, 0.032A, fast-acting fuse is recommended for 4-20mA current loops.
Note 3: Transmitters may be 2, 3, or 4 wire type.
Note 4: Transmitters may be powered from separate power sources.
Note 5: Terminate all shields of the cable at their respective signal source.

Analog Input Modules

F3-08AD-1 8-Ghannel Analog Input <--> (Replaces F3-08AD)	
Number of Channels	8, single ended (one common)
Input Ranges	4-20mA
Resolution	12 bit (1 in 4096)
Low Pass Filter	-3db @ 200Hz (-6db/octave)
Input Impedance	250 ohm $\pm 0.1 \%, 1 / 2 \mathrm{~W}$ current input
Absolute Maximum Ratings	$\pm 40 \mathrm{~mA}$
Conversion Time	1 channel per CPU scan
Converter Type	Successive approximation, MAX170
Linearity Error	± 1 count (0.03% of full scale) maximum
Input Stability	± 0.05 count
Maximum Inaccuracy	0.1% of full scale at $77^{\circ 9}\left(25^{\circ} \mathrm{C}\right)$
Accuracy vs. Temperature	57ppm $/{ }^{\circ} \mathrm{C}$ maximum full scale (including maximum offset change of 2 counts)

Recommended Fuse	0.032 A, Series 217 fast-acting
Power Budget Requirement	45mA @9 VDC, 55mA @ 24VDC
External Power Supply	None required
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95% (non-condensing)
Environmental air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810 C 516.2
Noise Immunity	NEMA ICS3-304

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

Note 2: To avoid "ground loop" errors, the following transmitter types are recommended: 2 and 3 wire: Isolation between input signal and P / S
4 wire: Full isolation between input signal, P / S and output signal.
Note 3: A Series 217 0.032A fast-acting fuse is recommended for 4-20mA applications.

Analog Input Modules

F3-16AD 16-Channel Analog Input <-->

Number of Channels	16, single ended (one common)
Input Ranges	$\pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-5 \mathrm{~V}^{\prime}, 0-10 \mathrm{~V}, 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA}^{2}$
Channels Individually Configured	Range is selected for all channels. Each channel can be wired for voltage or current.
Resolution	12 bit (1 in 4096)
Input Impedance	2Mohm, voltage input, $5000 \mathrm{hm} \pm 1 \%$ current input
Absolute Maximum Ratings	$\pm 25 \mathrm{~mA}$, voltage input $\pm 30 \mathrm{~mA}$, current input
Conversion Time	$35 \mu s$ per channel, 1 channel per CPU scan
Converter Type	Successive Approximation, AD574
Linearity Error	± 1 count maximum
Maximum Inaccuracy at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$	0.25\% of full scale, voltage input 1.25% of full scale, current input
Accuracy vs. Temperature	57ppm $/{ }^{\text {C }}$ c maximum full scale

Recommended Fuse	0.032 A, Series 217 fast-acting, current inputs
Power Budget Requirement	55mA @ 9VDC, 65mA @ 24VDC
External Power Supply	None required
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to 60 C$)$
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95\% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304
- requires gain adjustment with potentiometer. - resolution is 3275 counts (instead of 4096). Allows easier broken transmitter detection	

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

Temperature Input Modules

F3-08THM-n 8-Channel Thermocouple Input <-->
Note: When you order the module, replace the " n " with the type of thermocouple needed. For example, to order a Type J thermocouple module, order part number F3-08THM-J or F3-08THM-K for type K. Types J and K are stock. All others are special order.

Input Ranges	$\begin{aligned} & \text { Type E: -270/1000 }{ }^{\circ} \mathrm{C},-450 / 1832^{\circ} \mathrm{F} \text { (obsolete) } \\ & \text { Type J. }-210 / 760^{\circ} \mathrm{C},-350 / 1 / 390^{\circ} \mathrm{F} \\ & \text { Tyye K: }-207 / / 370^{\circ} \mathrm{C},-450 / 2500^{\circ} \mathrm{F} \\ & \text { Type R: } 0 / 1768^{\circ} \mathrm{C}, 32 / 3214^{\circ} \mathrm{F} \text { (obsolete) } \\ & \text { Type S: } 0 / 1768^{\circ} \mathrm{C}, 32 / 3214^{\circ} \mathrm{F} \text { (obsolete) } \\ & \text { Type T- - } 270 / 400^{\circ} \mathrm{C},-450 / 752^{\mathrm{F}} \text { (obsolete) } \\ & -1: 0-50 \mathrm{mV} \\ & -2: 0-100 \mathrm{mV} \end{aligned}$
Resolution	12 bit (1 in 4096)
Input Impedance	27Kohm DC
Absolute Maximum Ratings	Fault protected input, 130 Vrms or 100 VDC
Cold Junction Compensation	Automatic
Conversion Time	15 ms per channel, minimum 1 channel per CPU scan

Converter Type	Successive approximation, AD574
Linearity Error	± 1 count (0.03% of full scale) maximum
Maximum Inaccuracy at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$	0.35% of full scale
Accuracy vs. Temperature	$57 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum full scale
Power Budget Requirement	50 mA @ 9 VDC, 34 mA @ 24VDC
External Power Supply	None required
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810 C 514.2
Shock	MIL STD 810 C 516.2
Noise Immunity	NEMA ICS3-304

Notes:

1.Terminate shields at the respective signal source.
2. Leave unused channel open (no connection).
3. This module is not compatible with the ZIPLink wiring system.

Analog Output Modules

F3-04DA-1 4-Channel Analog Output <-->	
Number of Channels	4
Output Range	$0-5 \mathrm{~V}, 0-10 \mathrm{~V} 4-12 \mathrm{~mA}$, 4-20 mA (source)
Channels Individually Configured	Yes
Resolution	12-bit (1 in 4096)
Output Type	Single ended (one common)
Output Impedance	0.50 hm typical, voltage output
Output Current	$5 \mathrm{~mA} \mathrm{source}, \mathrm{2.5mA} \mathrm{sink} \mathrm{(voltage)}$
Short-circuit Current	40mA typical, voltage output
Load Impedance	1Kohm maximum, current output 2Kohm minimum, voltage output
Linearity Error	± 1 count ($\pm 0.03 \%$ maximum)
Maximum Inaccuracy at $77^{\circ} \mathrm{F}\left(25^{\circ} \mathrm{C}\right)$	$\pm 0.6 \%$ of span, current output $\pm 0.2 \%$ of span, voltage output

Accuracy vs. Temperature	$\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum
Conversion Time	$30 \mu \mathrm{~S}$ maximum
Power Budget Requirement	144 mA @ 9V, 108mA @24V
External Power Supply	None required
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810 C 514.2
Shock	MLL STD 810 C 516.2
Noise Immunity	NEMA ICS3-304

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

Note 1: Shields should be connected to the OV (COM) of the module.
Note 2: Unused voltage and current outputs should remain open (no connections).

Analog Output Modules

F3-04DAS 4-Channel Isolated Analog Output <->>	
Number of Channels	4
Output Ranges	$\begin{aligned} & \pm 5 \mathrm{~V}, \pm 10 \mathrm{~V}, 0-5 \mathrm{~V}, 0-10 \mathrm{~V}, 1-5 \mathrm{~V} \\ & 0-20 \mathrm{~mA}, 4-20 \mathrm{~mA} \end{aligned}$
Channels Individually Configurable	Yes
Resolution	12-bit (1 in 4096)
Output Type	Isolated, 750 VDC channel-to-channel 750 VDC channel-to-logic
Output Current	$\pm 5 \mathrm{~mA}$ voltage output
Short-circuit Current	$\pm 2 \mathrm{~mA}$ typical, voltage output
Capacitive Load Drive	0.1 FF typical, voltage output
Load Impedance	470ohm maximum, current output 2Kohm minimum, voltage output
Isolation Mode Rejection	140 dB at 6 OHz
Linearity Error	± 1 count ($\pm 0.03 \%$ maximum)
Calibration Error	$\pm 0.15 \%$ typical, $\pm 0.75 \%$ max. of span $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ maximum of tuil scale

Calibrated Offset Error	± 1 count maximum, current output $\pm 5 \mathrm{mV}$ typical, $\pm 50 \mathrm{mV}$ max. voltage out $\pm 0.2 \mathrm{mV}$ typical $/{ }^{\circ} \mathrm{C}$
Conversion Time	30uS maximum, 1 channel/scan
Power Budget Requirement	154mA @ 9V, 145mA @ 24V
External Power Supply	None required
Operating Temperature	32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $\left.60^{\circ} \mathrm{C}\right)$
Storage Temperature	-4° to $158^{\circ} \mathrm{F}\left(-20^{\circ}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative Humidity	5 to 95\% (non-condensing)
Environmental Air	No corrosive gases permitted
Vibration	MIL STD 810C 514.2
Shock	MIL STD 810C 516.2
Noise Immunity	NEMA ICS3-304

See page 5-29 for part numbers of ZIPLink cables and connection modules compatible with this I/O module.

Note 1: Shields should be connected to the respective channel's - V terminal of the module.
Note 2: Each isolated output channel may have either a voltage or current load, but not both.
Note 3: An external 0.31 Amp fast-acting fuse in series with the isolated +l terminal (+15VDC) is recommended to protect against accidental shorts to the -V terminal (15VDC common).
Note 4: Do not attempt to source more than 20mA from any one of the four isolated 15VDC power supplies.

DL305 Instruction Set

Boolean Instructions

Store (STR)
Begins a new rung or an additional branch in a rung with a normally Store Not (STRN)
Begins a new rung or an additional branch in a rung with a normally closed contact
Store timer (STR TMR) D3-330/340 only
Begins a new rung or additional branch in a rung with a normally
open timer contact
open timer contact.
Store not timer (STR NOT TMR) D3-330/340 only Begins a new rung or additional branch in a rung with a normally
closed timer contact.
Store counter (STR
Store counter (STR CNT) D3-330/340 only Begins a new rung or additional branch in a rung with a normally
open counter contact.
Store not counter (STR NOT CNT) DL330/DL340 only Begins a new rung or additional branch in a rung with a normally
Or (OR)
Logically Ors a normally open contact in parallel with another contact in a rung.
Or not (OR NOT)
Logically Ors a normally closed contact in parallel with another contact in a rung.
Or timer (OR TMR) D3-330/340 only
Logically Ors a normally open timer contact in parallel with another contact in a rung.
Or not timer (OR NOT TMR) D3- 330/340 only Logically Ors a normally closed timer contact in parallel with another contact in a rung.
Or counter (OR CNT) D3-330/340 only Logically Ors a normally open counter contact in parallel with another contact in a rung.
Or not counter (OR NOT CNT) D3-330/340 only Logically Ors a normally closed counter contact in parallel with another contact in a rung.
And (AND)
Logically ANDs a normally open contact in series with another contact in a rung.
And not (ANDN)
Logically ANDs a normally closed contact in series with another contact in a rung.
And timer (AND TMR) D3-330/340 only Logically ANDs a normally open timer contact in series with another contact in a rung.
And not timer (AND NOT TMR) D3-330/340 only Logically ANDs a normally closed timer in series with another contact in a rung.
And counter (AND CNT) D3-330/340 only Logically ANDs a normally open counter contact in series with another contact in a rung.
And not counter (And NOT CNT) D3-330/340 only Logically ANDs a normally closed counter contact in series with another contact in a rung.
And store (AND STR)
Logically ANDs two branches in a rung in series.
Or store (OR STR)
Logically Ors two branches of a rung in parallel.
Out (OUT)
Reflects the status of the rung (ON/OFF) and outputs the discrete (ON/OFF) state to the specified image register.
Set (SET) D3-330/340 only
Sets or turns on an output. Once the output is set it will remain on until it is reset using the RST instruction or by a result of the ladder logic execution.
Reset (RST)
Resets or turns OFF an output or resets a counter.
Set out (SET OUT)
Reflects the status of the rung (ON/OFF) and outputs the discrete (ON/OFF) state to the specified image register.
Set out reset (SET OUT RST)
Typically known as a one shot, when the input logic produces an OFF to ON transition the output will turn ON for one CPU scan.
Master control set (MCS)/Master control reset (MCR) The Master control set and Master Control Reset instructions are used to provide an additional left power rail which is controllable by an ber of rungs of ladder logic can be disabled using these instructions.

Comparative Boolean Instructions
Store, if equal (STRE) D3-330/340 only Begins a new rung or additional branch in a rung with a normally open comparative counter contact. The contact will be ON if
C aaa B bbb.
Store not, if equal (STR N) D3-330/340 only Begins a new rung or additional branch in a rung with a normally closed comparative counter contact. The contact will be ON if C aaa $\neq \mathrm{B}$ bbbb.
Or, if equal (ORE) D3-330/340 only Connects a normally open comparative counter contact in parallel with another contact. The contact will be ON if C aaa $=\mathrm{B}$ bbbb.
Or not, if equal (OR N) D3-330/340 only Connects a mormally closed comparative counter contact in parallel with another contact. The contact will be ON if C aaa $\neq \mathrm{B}$ bbbb.
And, if equal (ANDE) D3-330/340 only Connects a normally open comparative counter contact in series with
And not, if equal (ANDNE) D3-330/340 only
And not, if equal (ANDNE) D3-330/340 only
Connects a normally closed comparative counter contact in series with annects a normally closed comparative counter contact in series w
another contact. The contact will be ON if C aaa $\equiv \mathrm{B}$ bbbb.

Accumulator Load and Output Instructions

Data store (F50)
Loads the value of a 16 -bit-register, two consecutive 8 -bit registers, or a 4 -digit BCD value into the accumulator.
Data store 1(F51)
Loads the value from a specified 8 -bit register into the lower 8 bits of the accumulator.
Data store 2 (F52)
Loads the value of the most significant 4 bits of a specified 8 bit register into the least significant 4 bits of the accumulator.
Data store 3 (F53)
Loads the value of the least significant 4 bits of a specified 8 bit register into the least significant 4 bits of the accumulator.
Data store 5 (F55)
Loads the value of 16 -image register locations for a specified 16 -point input module into the accumulator
Data out (F60)
Copies the 16 -bit value in the accumulator to a 16 -bit reference or two consecutive 8 -bit registers.
Copies the value in the lower 8 bits of the accumulator to a specified Copies the value
8-bit register.
Data out 2 (F62)
Copies the value in the least significant 4 bits of the accumulator into the most significant 4 bits of a specified 8 -bit register.
Data out 3 (F63)
Copies the value in the least significant 4 bits of the accumulator to the least significant 4 bits of a specified 8 -bit register.
Data out 5 (F65)
Copies the 16 -bit value in the accumulator to the image register of a specified 16 point output module.

Bit Operation Instructions

Shift left (F80)
Shifts the value in the accumulator a specified number of bits (15 maximum) to the left.
Shift right (F81)
Shifts the value in the accumulator a specified number of bits (15 maximum) to the right.
Decode (F82)
Decodes a 4-bit binary number in the accumulator by setting the appropriate bit position to a one.
Encode (F83)
Encodes the accumulator bit position that contains a 1 by returning the appropriate 4-bit binary representation.
Binary (F85)
Converts a $B C D$ value in the accumulator to the binary/HEX equivalent value.
Binary coded decimal (F86) Converts a binary/HEX equivalent value in the accumulator to the $B C D$ equivalent.
Inverse (F84)
Generates the one's complement of the number in the accumulator.

Accumulator Logic Instructions

Data and (F75)
Logically ANDs the value in a 16 -bit reference, two consecutive 8 -bit registers, or a 4-digit BCD constant with the value in the accumulator.
Data or (F76)
Logically ORs the value in a 16 -bit reference, two consecutive 8 -bit
registers, or 4 -digit BCD constant with the value in the accumulator.
Compare (F70)
Compares the value in a 16 -bit reference, two consecutive 8 -bit registers, or 4 -digit BCD constant with the value in the accumulator.

Timer, Counter and Shift Register Instructions

Timer (TMR) D3-330/340 only
Provides a single input timer with a 0.1 second increment (0-999.9 seconds) in the normal operating mode, or a 0.01 second increment (0-99.99 seconds) in the fast timer mode.
Counter (CNT) D3-330/340 only
Provides a counter with a count and reset input and a range of 0-9999.
Shift register (SR) D3-330/340 only
Shitts data through a predefined number of shift register bits (up to 128 bits).

Math Instructions

Add (F71)

Adds the value of a 16 -bit reference, two consecutive 8 bit registers, or a 4 -digit BCD constant with the value in the accumulator
Subtract (F72)
Subtracts the value in a 16 -bit register, two consecutive 8 -bit registers, or a 4-digit BCD constant from the value in the accumulator. Multiply (F73)

Multiplies the value in a 16 -bit register, two consecutive 8 -bit registers, or a 4-digit BCD constant by the value in the accumulator.
Divide (F74)
Divides the value in the accumulator by the value in a 16 -bit register,
two consecutive 8 -bit registers, or a 4 -digit BCD constant.
Message Instructions
Fault (F20)
Used to display a 4-digit BCD constant, 16-bit register, or two consecu

Used to display a 4 -digit BCD constant, 16 -bit register, or two consecutive 8 -bit data registers on the handheld programmer or DirectSoft.

D3-350 Instruction Set

Boolean Instructions

Store (STR)
Begins a new rung or an additional branch in a rung with a normally open contact.
Store not (STR NOT)
Begins a new rung or an additional branch in a rung with a normally
Or (OR)
Logically ORS a normally open contact in parallel with another contact in a rung.
Or Not (OR NOT)
Logically ORS a normally closed contact in parallel with another
contact in a rung.
And (AND)
Logically ANDS a normally open contact in series with another contact in a rung
And Not (AND NOT)
Logically ANDS a normally closed contact in series with another contact in a rung.
And Store (AND STR)
Logically ANDS two branches of a rung in series.
Or Store (OR STR)
Logically ORS two branches of a rung in parallel.
Out (OUT)
Reflects the status of the rung (on/off) and outputs the discrete (on/o state to the specified image register point or memory location.
Or Out (OR OUT)
Reflects the status of the rung and outputs the discrete (ON/OFF) state oo the image register. Multiple OR OUT instructions referencing the same discrete point can be used in the program.
Not (NOT)
Inverts the status of the rung at the point of the instruction.
Positive Differential (PD)
Is typically known as a a one shot. When the input logic produces an off to on transition, the output will energize for one CPU scan.
Set (SET)
An output that turns on a point or a range of points. The reset instruction is used to turn the point(s) OFF that were set ON with the set instruction.
Reset (RST)
An output that resets a point or a range of points.
Pause outputs (PAUSE)
Disables the update for a range of specified output points.
Comparative Boolean Instructions
Store if Equal (STR E)
Begins a new rung or additional branch in a rung with a normally Begins a new rung or additional branch in a rung with a normall
open comparative contact. The contact will be on when $A=B$.
Store if Not Equal (STR NOT E)
Begins a new rung or additional branch in a rung with a normally Begins a new rung or additional branch in a rung with a normally
closed comparative contact. The contact will be on when $A \neq B$.
Or if Equal (OR E)
Connects a normally open comparative contact in parallel with another contact. The contact will be on when $\mathrm{A}=\mathrm{B}$.
Or if Not Equal (OR NOT E)
Connects a normally closed comparative contact in parallel with another contact. The contact will be on when $\mathrm{A} \neq \mathrm{B}$.
And if Equal (AND E)
Connects a normally open comparative contact in series with another contact. The contact will be on when $\mathrm{A}=\mathrm{B}$.
And if Not Equal (AND NOT E)
Connects a normally closed comparative contact in series with another contact. The contact will be on when $\mathrm{A} \neq \mathrm{B}$.
Store (STR)
Begins a new rung or additional branch in a rung with a normally open comparative contact. The contact will be on when $A \geq B$. Store not (STR NOT)

Begins a new rung or additional branch in a rung with a normally closed comparative contact. The contact will be on when $\mathrm{A}>\mathrm{B}$. Or (OR)

Connects a normally closed comparative contact in parallel with another contact. The contact will be on when $A \geq B$.
Or Not (OR NOT)
Connects a normally closed comparative contact in parallel with another contact. The contact will be on when $A<B$.

And (AND)

Connects a normally open comparative contact in series with another contact. The contact will be on when $\mathrm{A} \geq \mathrm{B}$.
And Not (AND NOT)
Connects a normally closed comparative contact in series with another contact. The contact will be on when $\mathrm{A}<\mathrm{B}$.

Bit of Word Boolean Instructions

Store Bit of Word (STRB)
Begins a new rung or an additional branch in a rung with a normally Begins a new rung or an additional branch in a rung with a no
open contact that examines single bit of a V-memory location.
Store Not Bit of Word (STRNB)
Begins a new rung or an additional branch in a rung with a normally closed contact that examines single bit of a V -memory location.
Or Bit of Word (ORB)
Logically ORS a normally open bit of word contact in parallel with another contact in a rung.
Or Not Bit of Word (ORNB)
Logically ORS a normally closed bit of word contact in parallel with another contact in a rung.
And Bit of Word (ANDB)
Logically ANDS a normally open bit of word contact in series with another contact in a rung.
And Not Bit of Word (ANDNB)
Logically ANDS a normally closed bit of word contact in series with another contact in a rung.
Out Bit of Word (OUTB)
Reflects the status of the rung (on/off) and outputs the discrete (on/off) state to the specified bit of a V -memory location.

Set Bit of Word (SETB)
An output that turns on a single bit of a V-memory location. The bit An output that turns on a single bit of a V-memory location. The bit
remains on until it is reset. The reset bit of word instruction is used to remains on un
turn off the bit.
Reset Bit of Word (RSTB)
An output that resets a single bit of a V -memory location.

Immediate Instructions

Store Immediate (STR I)
Begins a rungbranch of logic with a normally open contact. The contact will be updated with the current input field status when processed in the program scan.
Store Not Immediate (STR NOT I)
Begins a rungbranch of logic with a normally closed contact. The contact will be updated with the current input field status when processed in the program scan.
Or Immediate (OR I)
Connects a normally open contact in parallel with another contact. The contact will be updated with the current input field status when processed in the program scan.
Or Not Immediate (OR NOT I)
Connects a normally closed contact in parallel with another contact The contact will be updated with the current input field status when processed in the program scan.
And Immediate (AND I)
Connects a normally open contact in series with another contact. The contact will be updated with the current input field status when processed in the program scan.
And Not Immediate (AND NOT I)
Connects a normally closed contact in series with another contact. The contact will be updated with the current input field status when processed in the program scan.
Out Immediate (OUT I)
Reflects the status of the rung. The output field device status is updated
when the instruction is processed in the program scan.
Or out immediate (OR OUTI)
Reflects the status of the rung and outputs the discrete (ON/OFF) state to the image register. Multiple OR OUT instructions referencing the same discrete point can be used in the program. The output field device status is updated when the instruction is processed in the program scan.
Set Immediate (SET I)
An output that turns on a point or a range of points. The reset instruction is used to turn the point(s) off that were set The output field device status is updated when the instruction is processed in the program scan.
Reset Immediate (RST I)
An output that resets a point or a range of points. The output field device status is updated when the instruction is processed in the program scan.
Timer, Counter, and Shift Register Instructions
Timer (TMR)
Single input incrementing timer with 0.1 second resolution (0-999.9 seconds).
Fast Timer (TMRF)
Single input incrementing tirer with 0.01 second resolution (0-99.99
seconds).
Accumulating Timer (TMRA)
Two input incrementing timer with 0.1 second resolution (0-
$9,999,999.9 \mathrm{sec}$.). Time enable/reset inputs control the timer.
Accumulating Fast Timer (TMRAF) Two input incrementing timer with 0.01 second resolution (0
999,999.99 sec.). Time and enable/reset inputs control timer.
Counter (CNT)
Two input incrementing counter (0-9999). Count and reset inputs contage Counter (SGCNT)
Single input incrementing counter (0-9999). RST instruction must be reset count.
Up Down Counter (UDC) Three input counter (0-99999999). Up, down, and reset inputs control the counter.
Shift Register (SR)
Shifts data through a range of control relays with each clock pulse. The data, clock, and reset inputs control the shift register

Accumulator / Stack Load and Output Data

Load (LD)
Loads a 16 -bit word into the lower 16 -bits of the accumulator / stack. Load Double (LDD)
Loads a 32 -bit word into the acculator / stack.
Load Real Number (LDR)
Loads a real number contained in two consecutive V -memory location or an 8 -digit constant into the accumulator
Load Formatted (LDF)
Loads the accumulator with a specified number of consecutive discrete memory bits.
Load Address (LDA)
Loads the accumulator with the HEX value for an octal constant (address).
Load Accumulator Indexed (LDX)
Loads the accumulator with a V-memory address to be offset by the value in the accumulator stack
Load Accumulator Indexed from Data Constants (LDSX) Loads the accumulator with an offset constant value (ACON/NCON)
from a data label area (DLBL).
Out (OUT)
Copies the value in the lower 16 -bits of the accumulator to a specified \checkmark mary location.
Out Double (OUTD)
Copies the value in the accumulator to two consecutive V -memory
locations.
Out Formatted (OUTF)
Outputs a specified number of bits (1-32) form the accumulator to the specified discrete memory locations.

Output Indexed (OUTX)
Copies a 16 -bit value from the first level of the accumulator stack to a source address offset by the value in the accumulator.
Pop (POP)
Moves the value from the first level of the accumulator stack to the accumulator and shifts each value in the stack up one level.

Logical Instructions (Accumulator)

And (AND)
Logically ANDS the lower 16 bits in the accumulator with a V memory
And Double (ANDD)
Logically ANDS the value in the accumulator with an 8 digit constant.
And Formatted (ANDF)
Logically ANDS the value in the accumulator and a specified range of
discrete memory bits (1-32) discrete memory bits (1-32).
Or (OR)
Logically ORS the lower 16 -bits in the accumulator with a V-memory location.
Or Double (ORD)
Logically ORS the value in the accumulator with an 8 -digit constant.
Or Formatted (ORF)
Logically ORS the value in the accumulator with a range of discrete bits (1-32).
Exclusive Or (XOR)
Performs an Exclusive OR of the value in the lower 16-bits of the
accumulator and a V -memory location
Exclusive Or Double (XORD)
Performs an Exclusive OR of the value in the accumulator and an 8 digit constant.
Exclusive Or Formatted (XORF)
Performs an exclusive OR of the value in the accumulator and a range Compare (CMP)
Compare (CMP)
Compares the value in the lower 16 bits of the accumulator with a
Compare Double (CMPD)
Compares the value in the accumulator with two consecutive
V-memory locations or an 8-digit constant.
Compare Formatted (CMPF)
Compares the value in the accumulator with a specified number of
Compare Real Number (CMPR)
Compares the real number in the accumulator with two consecutive V -memory locations or an 8 -digit real number constant

D3-350 Instruction Set

Add (ADD)

Adds a BCD value in the lower 16 -bits in the accumulator with a V-memory location. The result resides in the accumulator
Add Double (ADDD)
Adds a BCD value in the accumulator with two consecutive V -memory locations or an 8 -digit constant. The result resides in the ulator
Add Real Number (ADDR)
Adds a real number in the accumulator with a real number constant or a real number contained in two consecutive V -memory locations. The result resides in the accumulator.
Subtract (SUB)
Subtract a BCD value, which is either a V-memory location or a 4 -digit constant, from the lower 16 -bits in the accumulator. The result resides in the accumulator.
Subtract Double (SUBD)
Subtracts a BCD value, which is either two consecutive V-memory locations or an 8 -digit constant, from a value in the accumulator. The result resides in the accumulator.
Subtract Real Number (SUBR)
Subtract a real number, which is either two consecutive V -memory locations or a real number constant, from the real number in the accumulator. The result resides in the accumulator.
Multiply (MUL)
Multiplies a BCD value, which is either a V-memory location or a 4-digit constant, by the value in the lower 16 -bits in the accumulator The result resides in the accumulator
Multiply Double (MULD)
Multiplies a BCD value contained in two consecutive V-memory location by the value in the accumulator. The result resides in the accumulator.
Multiply Real Number (MULR)
Multiplies a real number, which is either two consecutive V-memory locations or a real number constant, by the real number in the
accumulator. The result resides in the accumulator Divide (DIV)

Divides a BCD value in the lower 16 -bits of the accumulator by a Divides a BCD value in the lower 16 -bits of the accumulator by a
BCD value which is either a V-memory location or a 4 -digit constant. The result resides in the accumulator.
Divide Double (DIVD)
Divides a BCD value in the accumulator by a BCD value which is either two consecutive V -memory locations or an 8 -digit constant. The result resides in the accumulator.
Divide Real Number (DIVR)
Divides a real number in the accumulator by a real number which is either two consecutive V -memory locations or a real number constant. The result resides in the accumulator.
Add Binary (ADDB)
Adds the binary value in the lower 16 bits of the accumulator to a value which is either a V-memory location, or a 16 -bit constant. The result resides in the accumulator.
Subtract Binary (SUBB)
Subtracts a 16 -bit binary value, which is either a V-memory location or a 16 bit constant, from the lower 16 bits in the accumulator. The
result resides in the accumulator. result resides in the accumulator.
Multiply Binary (MULB)
Multiplies a 16 -bit binary value, which is either a V -memory location or a 16 -bit constant, by the lower 16 bits in the accumulator. The result resides in the accumulator.
Divide Binary (DIVB)
Divides the binary value in the lower 16 bits in the accumulator by a value which is either a V-memory location or a 16 -bit constant. The result resides in the accumulator.
Increment (INC)
Increments a BCD value in a specified V -memory location by 1 each Decrement (DEC)

Decrements a BCD value in a specified V -memory location by 1 each time he binary (NCB).
Increment Binary (INCB)
Increments a binary value in a specified V-memory location by 1 each
Decrement Binary (DECB)
Decrement Binary (DECB)
Decrements a binary value in a specified V -memory location by 1 Decrements a binary value in a specified
each time the instruction is executed.

Bit Instructions (Accumulator)
Sum (SUM)
Counts the number of bits in set to "1" in the accumulator. The HEX result resides in the accumulator.
Shift Left (SHFL)
Shifts the bits in the accumulator a specified number of places to the
left. left.
Shift Right (SHFR)
Shifts the bits in the
Shifts the bits in the accumulator a specified number of places to the right.
Rotate Left (ROTL)
Rotates the bits in the accumulator a specified number of places to
Rotate Right (ROTR)
Rotates the bits in the accumulator a specified number of places to the right.
Encode (ENCO)
Encodes the bit position set to 1 in the accumulator, and returns the appropriate binary representation in the accumulator.
Decode (DECO)
Decropriate bit binary value ($0-31$) in the accumulator by setting the appropriate bit position to 1 in the accumulator.

Number Conversion Instructions (Accumulator)
Binary (BIN)
Converts the BCD value in the accumulator to the equivalent binary value. The result resides in the accumulator.
Binary Coded Decimal (BCD)
Converts the binary value in the accumulator to the equivalent BCD
value. The result resides in the accumulator.

Invert (INV)
Takes the one's complement of the 32 -bit value in the accumulato
The result resides in the accumulato
Ten's complement (BCDCPL)
Takes the ten's complement of the BCD value in the accumulator. The
ASCII to HEX (ATH)
Converts the table of ASCII values to a table of hexadecimal values.
HEX to ASCII (HTA)
Converts a table of hex
Converts a table of hexadecimal values to a table of ASCII values.
Segment (SEG)
Converts a 4 -digit HEX number in the accumulator to a corresponding bit pattern for interfacing to seven segment displays. The result resides
Gray code to BCD (GRAY)
Converts a 16-bit GRAY code valuen
Converts a 16 -bit GRAY code value in the accumulator to a
result resides in the accumulator.
Shuffle digits (SFLDGT)
Shuffles a maximum of 8 d
Shuffles a maximum of 8 digits rearranging them in a specified order.
Binary to Real Number (BTOR)
Binary to Real Number (BTOR)
Converts the integer value in the accumulator into a real number. The
result resides in the accumulator.
Real Number to Binary (RTOB)
Converts the real number in the accumulator into an integer value.
The result resides in the accumulator.
Table Instructions
Move (MOV)
Moves the values from on V -memory table to another V -memory table.
Move Memory Cartridge/Load Label (MOVMC/LDBL) Copies data from data label area in program ladder memory to V memory.
Move Memory Cartridge/Load Label (MOVMC/LDLBL) Copies data between V-memory and program ladder memory.

Clock/Calendar Instructions

Date (DATE) (year, month, day, day of the week) in the CPU calenda using two consecutive V memory locations.
Time (TIME)
Sets the time (hour, seconds, and minutes) in the CPU using two consecutive V - memory locations.

CPU Control Instructions

No Operation (NOP)
Inserts a no operation coil at a specified program address.
End (END)
Marks the termination point for the normal program scan. An End instruction is required at the end of the main program body.
Stop (STOP)
Changes the operational mode of the CPU form Run to Program (Stop).
Reset Watchdog Timer (RSTWT)
Resets the CPU watchdog timer.

Program Control Instructions

Goto/Label (GOTO/LBL)
Skips (does not execute) all instructions between the GOTO and the corresponding label (LBL) instruction.
For/Next (FOR/NEXT)
Executes the logic between the FOR and NEXT instructions a
specified number of times.
specified number of times.
Coto Subroutine/Subro
Goto Subroutine/Subroutine Return
Conditional/Subroutine Return (GTS/SBR w/RT) When a GTS instruction is executed, the program jumps to the SBR (subroutine). The subroutine is terminated with an RT instruction (unconditional return). When a return is executed, the program continues from the instruction after the calling GTS instruction.
Master Line Set/Master Line Reset (MLS/MLR) Allows the program to control sections of ladder logic by forming a new power rail. The MLS marks the beginning of a power rail and the
MLR marks the end of the power rail control MLR marks the end of the power rail control.

Interrupt Instructions

Interrupt Routine/Interrupt Return/Interrupt Return Conditional (INT/IRT/IRTC)

When a hardware or software interrupt occurs, the interrupt routine
will be executed. The INT instruction is the beginning of the interrupt routine. The interrupt routine is terminated with an IRT instruction (unconditional interrupt return). When an interrupt return is reached, the execution of the program continues from the instruction where the program execution was prior to the interrupt.
Enable Interrupt (ENI)
Enables hardware and software interrupts to be acknowledged. Disable Interrupt (DISI)

Disables hardware and software interrupts from being acknowledged.

Intelligent Module Instructions

Read from Intelligent Module (RD)
Reads a block of data (1-128 bytes max.) from an intelligent V/O Reads a
module.
Write to Intelligent Module (WT) Writes a block of data (1-28 bytes max.) to an intelligent I/O module.

Network Instructions

Read from network (RX)
Reads a block of data from another CPU on the network.
Write to network (WX)
Writes a block of data from the master device to a slave device on the
network. network.

