VAUTOMATIONDIRECT§

Motion Control

Sure servo

 Surestep ${ }^{\circ}$
Sure
 gear

Sure motion

Up-to-date price list: www.automationdirect.com/pricelist

FREE Technical Support: www.automationdirect.com/support

FREE Videos:
www.automationdirect.com/videos
FREE Documentation:
www.automationdirect.com/documentation
FREE CAD drawings: www.automationdirect.com/cad

In this interactive PDF you can:

- Use bookmarks to navigate by product category
- Use bookmarks to save, search, print or e-mail the catalog section
- Click on part \#s to link directly to our online store for current pricing, specs, stocking information and more

Surestep Stepping System Overview

High-performance microstepping drives with high-torque stepping motors

SureStep stepping systems provide simple and accurate control of position and speed where open-loop control and cost are considerations. Pulses (or "step" and "direction" signals) from the DirectLOGIC family of PLCs or other indexers and motion controllers are "translated" by the microstepping drive into precise movement of the stepping motor shaft. The SureStep stepping motors use 2-phase technology with 200 full steps per revolution or 1.8° per full step. Older type stepping motor drives, which operate stepping motors in full step mode, can result in stalling or lost motion due to potential problems with low speed mechanical vibration (usually between 100 to 200 RPM). To minimize this vibration problem, the SureStep microstepping drives use advanced microstepping technology to smooth the motor motion and stepping response.

Standards and Agency Approvals \mathcal{C}

How fast can my system go?

Maximum Potential Specd Chart (rpm) *					
PLC		SureStep Drive Steps/Rev Selection **			
Model	Fastest Output	$\mathbf{4 0 0}$ Steps/Rev	$\mathbf{1 0 0 0}$ Steps/Rev	2000 Steps/Rev	10,000 Steps/Rev
DL05, DL105	7 kHz	1,050	420	210	42
DL06	10 kHz	1,500	600	300	60
H0/H2/H4/T1H -CTRIO	25 kHz	3,750	1,500	750	150
H2-CTRI02	250 kHz	37,500	15,000	7,500	1,500
P3-HSO	1 MHz	150,000	60,000	30,000	6,000
*T					

* These speeds are theoretical maximums. See torque curves of specific motors for their rpm limits.
** Full step (200 steps/rev) will allow higher top speed. Full stepping, however, can create vibration at low speed.

The STP-DRV-4035 has selectable microstep resolutions of 400 (half-step); 1,000 (each full step $\div 5$ microsteps); 2,000 $(\div 10)$; or $10,000(\div 50)$.
The STP-DRV-6575 has selectable resolutions of 200 (full-step); 400 (half-step); 2,000; 5,000; 12,800; or 20,000 steps per revolution.
The advanced drives (STP-DRV-4805, STP-DRV-80100) have software-selectable resolutions ranging from 200 (full step) to $51,200(\div 256)$ steps per revolution.
The advanced drives can operate with traditional high-speed inputs, but can also be commanded via $0-5 \mathrm{~V}$ analog input. They have an internal indexer that can accomplish point-to-point moves controlled via ASCll communication.

FREE configuration software!

SureStep Pro configuration software is available that makes setting parameters a snap for the advanced drives (STP-DRV-4850 \& STP-DRV-80100)! Download free from our website:
http://support.automationdirect.com/products/surestep.html

Stepping Motor RPM $=(A \div B) \times(60$ seconds/minute $)$
Where: $\quad A=$ PLC output frequency (pulses per second)
$B=$ microstepping resolution selection (steps/revolution)

Maximum RPM =		Steps/Sec A		Steps/Rev B		Sec/Min
Example 1:	1,500 =	10,000	\div	400	X	60
DL06 with 10 kHz Built-in Pulse Output						
Example 2:	3,750 =	25,000	\div	400	X	60
Hx-CTRIO with 25 kHz Pulse Output						

Four components to make a complete system

Choose a drive, motor, motor extension cable and power supply

Surestepstepping System Overview

Stepping System : Head to Head

AutomationDirect USa Competition
Hey - I can do the math! - AutomationDirect
A complete 2-axis SureStep ${ }^{\text {rw }}$ Stepping System for less than just the competition's stepping drives.

High-torque stepping motors with 1-ft. cable and 4 -wire locking connector

The SureStep stepping family has twenty high-torque motors to handle a wide range of automation applications such as woodworking, assembly, and test machines. The motors are available in both single-shaft and dual-shaft configurations. Our square frame or "high-torque" style stepping motors are the latest technology, resulting in the best torque to volume. We have NEMA 17, 23, and 34 mounting flanges and holding torque ranges from 61 to 1288 oz in. Optional 20 -foot extension cables with locking connectors are available to interface any of the stepping motors to the microstepping drive. The extension cables can be easily cut to length, if desired.

Holding Torque (oz•in)
High Torque Motors (MTR)

Holding Torque (oz-in)

High-performance microstepping drive

SureStep microstepping drives
 (STP-DRV-4035 \& STP-DRV-6575)

- Two models available
- Standard high-speed pulse input (pulse and direction)
- On-board or removable screw terminals for easy hook-up
- Optically-isolated inputs ready for +5VDC logic from DirectLOGIC PLCs, or 5-24 VDC (depending on model).
- No software or add-on resistors required for drive configuration; dipswitch and/or rotary-dial set-up
- Dipswitch used for built-in self-test, microstep resolution selection, current level selection, and optional idle current reduction.

SureStep advanced microstepping drives (STP-DRV-4850 \& STP-DRV-80100)

All the features of the high-performance drive, plus:

- Software configurable
- 200-51,200 microsteps (software selectable)
- High-speed pulse input (Quadrature, cw/ccw, pulse/direction)
- Analog velocity mode (0-5v or potentiometer)
- Internal indexer (point-to-point moves via ASCII command)

Linear power supplies

- 32V @ 4A, 48V @ 5A, 48V @ 10A, 70V @ 5A
- Input and output fuses included on power supplies
- Includes 5 VDC Logic supply for all low voltaģe siģnals

Surestep. Choose your SureStep System

1. Choose a motor

Determine the torque and speed required by your application. Then look at the motor speed-torque curves in the "SureStep Stepping System Motors" section of this catalog chapter. Choose a motor that can run your application with plenty of speed and torque reserve (most stepper systems should have a 100\% safety margin for torque).

NEMA 17, 23 and 34 mounting flanges

Twenty bipolar step motors to cover a wide range of applications

Holding torque ranges from 61 to 1288 0z.in

Square frame style produces high torque and achieves best torque to volume ratio

2. Choose a motor extension cable

Our 20-ft motor extension cables have a locking connector that mates up to the motor cable. The extension cables allow you to quickly connect the motor to the drive without having to splice wires or cut any cables. If you chose an STP-MTR-xxxx motor, select an STP-EXT-020 cable.
If you chose an STP-MTRH-xxxx motor, select an STP-EXTH-020 cable.
(The "H" motors and cable can handle higher motor current)

3. Choose a drive

This chart is a quick selection guide. For a full list of features, check out the Technical Info later in this chapter.

What you need	STP- DRV- 4035	STP- DRV- 4850	STP- DRV- 6575	STP- DRV- $\mathbf{8 0 1 0 0}$
32V Speed-Torque Curve (from Step 1)	\checkmark	\checkmark	\checkmark	\checkmark
48V Speed-Torque Curve (from Step 1)	-	\checkmark	\checkmark	\checkmark
70V Speed-Torque Curve (from Step 1)	-	-	-	\checkmark
Pulse \& Direction Input	\checkmark	\checkmark	\checkmark	\checkmark
More than 3.5A/motor phase	-	\checkmark	\checkmark	\checkmark
More than 5A/motor phase ("H" motors)	-	-	\checkmark	\checkmark
Internal Indexing (Drive can move from Point A to Point B with a serial communication command)	-	\checkmark	-	\checkmark
Analog Velocity Input	-	\checkmark	-	\checkmark

...in 4 easy steps

4. Choose a power supply

Since all SureStep motors can operate at $32 \mathrm{~V}, 48 \mathrm{~V}$, and 70 V , the selection of a power supply is dependent on the selected speedtorque curve of the motor and on the selection of drive. Choose a power supply that matches the desired speed-torque curve
and stays within the voltage limit of the selected drive. Each power supply has incoming AC and outgoing DC fusing. There is also an electronically overload protected 5 V supply for all your logic needs.

Permissible Drive/Power Supply Combinations

-	Power Supply			
Drive	STP-	STP-	STP-	STP-
	PWR-	PWR-	PWR-	PWR-
	3204	4805	$\mathbf{4 8 1 0}$	7005
STP-DRV-4035	\vee	-	-	-
STP-DRV-4850	\vee	\vee	\vee	-
STP-DRV-6575	\vee	\vee	\vee	-
STP-DRV-80100	\vee	\vee	\vee	\vee

For systems that use multiple drives and only one power supply, please read our SureStep User Manual (under "Product Documentation") to properly size multiple systems.

Screw terminal AC input and DC output connections
120 or 240 VAC, $50 / 60 \mathrm{~Hz}$ power input (switch
$32 \mathrm{~V}, 48 \mathrm{~V}$ and 70 V linear supplies

Power ON LEDs
Unregulated linear supplies perfect for stepper systems

Input and output fusing included
 regulated logic power

NEMA Step Motor

Motor Extension Cable

Typical System

Surestep ${ }^{\circ}$ Stepping System Components

 SureStep ${ }^{\circledR}$ System

Single-shaft or Dual-shaft

Step Motor Power Supply

SureStep Microstepping Drive

SureStep
Extension Cable
$+$

SureStep
Connectorized Step Motor

SureStep stepping system includes:

- Four step motor power supplies
- Two DIP-switch configurable microstepping drives
- Two software configurable advanced microstepping drives
- Two motor extension cables
- Twenty step motors (NEMA 17, 23, 34 frame sizes; single \& dual shaft)

Standard stepper drive features

(STP-DRV-4035 \& STP-DRV-6575)

- Low cost, digital step motor driver in compact packaģe
- Operates from Step \& Direction signals, or Step CW \& Step CCW (jumper selectable)
- Fault output (-6575 only) \& Enable input
- Optically isolated I/O
- Digital filters prevent position error from electrical noise on command signals; jumper selectable: 150 kHz or 2 MHz (-6575 only)
- Rotary or DIP switch easily selects from many popular motors
- Electronic damping and anti-resonance (-6575 only)
- Automatic idle current reduction to reduce heat when motor is not moving; switch selectable: 50% or 90% of running current
- Switch selectable step resolution: (-DRV-4035) 400-10,000 steps per revolution; (-DRV-6575) 200-20,000 steps per revolution
- Switch selectable microstep emulation provides smoother, more reliable motion in full and half step modes
- Automatic self test (switch selectable)
- Operates from a 24-65 VDC or 12-40 VDC power supply, depending upon model
- Running current from 0.5-7.5A

Advanced stepper drive features

(STP-DRV-4850 \& STP-DRV-80100)

- Max 5A, 48 V and max $10 \mathrm{~A}, 80 \mathrm{~V}$ models available
- Software configurable
- Programmable microsteps
- Internal indexer (via ASCII commands)
- Self test feature
- Idle current reduction
- Anti-resonance
- Torque ripple smoothing
- Step, analog, \& serial communication inputs
- Serial communications allow point-to-point positioning

Motor features

- High torque, 2 -phase, bipolar, 1.8° per step, 4 -lead
- Available in single-shaft and dual-shaft models
- Connectorized
- (6) NEMA 17 motors
- (6) NEMA 23 motors
- (8) NEMA 34 motors

Power supply features

- Linear, unregulated DC power supplies
- 120/240 VAC selectable input
- $32 \mathrm{~V}, 48 \mathrm{~V}, 70 \mathrm{~V}$ DC output models available
- All models have additional 5VDC, 500 mA regulated logic supply
- Fusing included for both incoming AC and outgoing DC
- 5 V supply has electronic overload protection

Typical Wiring Diagram

Surestep Power Supply / Drive Compatibility

Drive ${ }^{(1)(2)}$	Recommended Power Supply ${ }^{(1)(2)}$			
Model \#	$\begin{gathered} \text { STP-PWR } \\ -3204 \end{gathered}$	$\begin{gathered} \text { STP-PWR } \\ -4805 \end{gathered}$	$\begin{gathered} \hline \text { STP-PWR } \\ -4810 \end{gathered}$	$\begin{gathered} \text { STP-PWR } \\ -7005 \end{gathered}$
STP-DRV-4035	\checkmark	No	No	No
STP-DRV-4850	\checkmark	\checkmark	\checkmark	No
STP-DRV-6575	\checkmark	\checkmark	\checkmark	No
STP-DRV-80100	\checkmark	\checkmark	\checkmark	\checkmark

1) Do NOT use a power supply that exceeds the drive's input voltage range. If using a non-STP linear power supply, ensure that the unloaded voltage does not float above the drive's maximum input range.
2) For best performance, use the lowest voltage power supply that supplies the required speed and torque.

SureStep Drive / Motor Compathility						
Motor ${ }^{(1)(2)}$			Recommended Drive ${ }^{(1)}$			
Model \# (1)(2)			$\begin{array}{\|l\|} \hline \text { STP-DRV } \\ -4035(1) \end{array}$	$\begin{aligned} & \text { STP-DRV } \\ & -4850(1) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { STP-DRV } \\ -6575(1) \end{array}$	$\left\|\begin{array}{c} \text { STP-DRV } \\ -80100^{(1)} \end{array}\right\|$
STP-MTR-17040(D)	1.7	$\begin{aligned} & \text { STP- } \\ & \text { EXT- } \\ & 020 \end{aligned}$	\checkmark	\checkmark	\checkmark	-
STP-MTR-17048(D)	2.0		\checkmark	\checkmark	\checkmark	
STP-MTR-17060(D)	2.0		\checkmark	\checkmark	\checkmark	
STP-MTR-23055(D)	2.8		\checkmark	\checkmark	\checkmark	
STP-MTR-23079(D)	2.8		\checkmark	\checkmark	\checkmark	
STP-MTR-34066(D)	2.8		\checkmark	\checkmark	\checkmark	
STP-MTRH-23079(D)	5.6	$\begin{array}{\|l\|} \text { STP- } \\ \text { EXTH- } \\ 020 \end{array}$	-		\checkmark	\checkmark
STP-MTRH-34066(D)	6.3				\checkmark	\checkmark
STP-MTRH-34097(D)	6.3				\checkmark	\checkmark
STP-MTRH-34127(D)	6.3				\checkmark	\checkmark

1) The combinations above will perform according to the published speed/torque curves However, any STP motor can be used with any STP drive. Using a motor with a current rating higher than the drive's output rating will proportionally limit the motor torque.
2) MTR motors have connectors compatible with the EXT extension cables. MTRH motors have connectors compatible with the EXTH extension cables.

Sure step $^{\circ}$. Stepping System Drives

SureStep ${ }^{\circledR}$ Microstepping Drives Overview

Surestep. Stepping System Drives

SureStep ${ }^{\circledR}$ Standard Microstepping Drives

Sure Step Series Specifications - Standard Microstepping Drives			
Microstepping Drive		STP-DRV-6575	STP-DRV-4035
Drive Type		Microstepping drive with pulse input	Microstepping drive with pulse input
Output Current		Selectable from 1.0-7.5 A/phase (peak of sine)	Selectable from 0.4 to 3.5 A/phase (maximum output power is 140W)
Input Voltage (external p/s required)		Nominal: 24-65 VDC Range: $20-75$ VDC	Nominal: 12-32 VDC Range: $12-42$ VDC (including ripple voltage)
Configuration Method		Rotary dial, DIP switches, jumpers	DIP switches
Amplifier Type		MOSFET, dual H-bridge, 4-quadrant	MOSFET, dual H-bridge, bipolar chopper
Current Control		4-state PWM @ 20 kHz	4-state PWM @ 20 kHz
Protection		n/a	n/a
Recommended Input Fusing		Fuse: 7A fast-acting; ADC \#ACG7; Holder: ADC \# DN-F6L110	Fuse: 4A fast-acting; ADC \# ACG4; Holder: ADC \# DN-F6L110
Input Signals	Input Circuit	5-24 VDC nominal (range: 4-30 VDC); optically isolated, differential.	Opto-coupler input with 440Ω resistance (5 to 15 mA input current); Logic Low is input 0.8 VDC or less; Logic High is input 4VDC or higher.
	Step/Pulse	Minimum pulse width $=0.25 \mu \mathrm{~s}$. Maximum pulse frequency $=$ 150 kHz or 2 MHz (user selectable). FUNCTIONS: step \& direction, CW/CCW step	Motor steps on falling edge of pulse and minimum pulse width is $0.5 \mu \mathrm{~s}$ (1MHz)
	Direction		Needs to change at least 2 microseconds before a step pulse is sent
	Enable	FUNCTION: disable motor when closed	Logic 1 will disable current to the motor (current is enabled with no hook-up or logic 0)
	Analog	n/a	n/a
Output Signal		30 VDC / 80 mA max, optically isolated photodarlington, sinking or sourcing. Function = closes on drive fault.	n/a
Features	Current Reduction	Reduce power consumption and heat generation by limiting motor running current to $100 \%, 90 \%$, or 80% of maximum. Current should be increased to 120% if microstepping. (Torque is reduced/increased by the same \%.)	n/a
	Idle Current Reduction	90% or 50% of running current. (Holding torque is reduced by the same \%.)	0% or 50% reduction (idle current setting is active if motor is at rest for 1 second or more)
	Microstep Resolution	20000, 12800, 5000, 2000, 400 smooth, 400, 200 smooth, or 200 steps/rev.	400 (200x2), 1,000 (200x5), 2,000 (200x10), or 10,000 (200x50) steps/rev
	Phase Current Setting	(1.3-6.3) $\times 80 \%-120 \%$ DIP switch selectable	0.4 to 3.5 A/phase with 32 selectable levels
	Self Test	Automatically rotates the motor back and forth two turns in each direction in order to confirm that the motor is operational	Uses half-step to rotate 1/2 revolution in each direction at 100 steps/second
	Step Pulse Noise Filter	Select 150 kHz or 2MHz	n/a
	Load Inertia	Set motor and load inertia range to 0-4x or 5-10x.	n/a
Connectors		Removable screw terminal blocks. Motor \& Power Supply: 30-12 AWG; Signals: 30-14 AWG	Screw terminal blocks with AWG 18 maximum wire size
Maximum Humidity		90\% non-condensing	90\% non-condensing
Storage/Ambient Temperature		0 to $50^{\circ} \mathrm{C}$ [32 to $122{ }^{\circ} \mathrm{F}$] (mount to suitable heat sink)	-20 to $80^{\circ} \mathrm{C}$ [-4 to $\left.176{ }^{\circ} \mathrm{F}\right]$
Operating Temperature		0 to $85^{\circ} \mathrm{C}$ [32 to $\left.185{ }^{\circ} \mathrm{F}\right]$ (interior of electronics section)	0 to $55^{\circ} \mathrm{C}\left[32\right.$ to $\left.131{ }^{\circ} \mathrm{F}\right]$ recommended; $70^{\circ} \mathrm{C}$ [158 $\left.{ }^{\circ} \mathrm{F}\right]$ maximum
Drive Cooling Method		Natural convection (mount drive to metal surface)	Natural convection (mount drive to metal surface to dissipate heat)
Mounting		(2) \#6 screws to mount wide or narrow side to metal surface	(4) \#4 screws to mount on wide side; (2) \#4 screws to mount on narrow side
Weight		10.802 [306g] - (including mating connectors)	9.3 oz. [264 g]
Agency Approvals		CE (EMC \& LVD); RoHS	CE (complies with EN55011A \& EN50082-1 (1992)), RoHS

Sure step $^{\circ}$ Stepping System Drives

SureStep ${ }^{\circledR}$ Advanced Microstepping Drives

Sure $_{\text {step }}{ }^{\circ}$ Stepping System Drives
 SureStep ${ }^{\circledR}$ Microstepping Drives Accessories

Braking Accessories

If you plan to use a regulated or switching power supply, you might encounter problems from regeneration. As a load rapidly decelerates from a high speed, much of the kinetic energy of that load is transferred back to the motor. This energy is then pushed back to the drive and power supply, resulting in increased system voltage. If there is enough overhauling load on the motor, the DC voltage will go above the drive and/or power supply limits.
This can trip the overvoltage protection of a switching power supply or a drive, and cause it to shut down.
To solve this problem, AutomationDirect offers a regeneration clamp and a braking resistor as optional accessories. The regen clamp has a built-in 50W braking resistor. For additional braking power (larger overhauling loads), an optional 100W braking resistor is also available.

Regeneration Clamp Description

As with most stepper systems, a clamp circuit is often required to limit increased power supply bus voltage when the motor is decelerating under load. This is commonly referred to as "regeneration," which is what happens when DC motors are driven by their load. During regeneration, the DC motor can produce enough voltage to actually exceed the input power supply voltage.
With a Regen Clamp, one or more stepper drives can be protected from "Over Voltage" conditions by placing the clamp module between the power supply and the drive. The clamp tracks the input power supply, and will operate from 24 to 80 volts. No adjustments are needed.
The Regen Clamp is designed to handle a wide range of conditions. The voltage input matches the needs of the SureStep stepper drives by providing 24 to 80 VDC capabilities, and external power resistors can be added for even greater continuous power requirements. The clamp modules are small and compac \dagger to minimize impact on the system design. More than one stepper drive can be connected to the clamp module with the potential to handle an entire multi-axis sytem.

Regeneration Clamp

Braking Resistor

Regeneration Clamp Features

- Built-in 50W power resistor for more continuous current handling (optional 100 W resistor is also available)
- Mounted on a heat sink
- Voltage range: 24-80 VDC; no user adjustments required
- Power: 50W continuous; 800W peak
- Wire connection: 6-pin screw terminal block; 12-18 AWG wire.
- Indicators (LED):

Green = power supply voltage is present
Red = clamp is operating (usually when stepper is decelerating)

- Protection: The external power supply is internally connected to an "Input Diode" in the regen clamp that protects the power supply from high regeneration voltages. This diode protects the system from connecting the power supply in reverse. If the clamp circuit fails, the diode will continue to protect the power supply from over-voltage.
- RoHS

Sure Step Series Specifications - Mierostepping Drives Optional Accessories

Part Number	Price	Description
STP-DRVA-RC-050 *	$\$ 99.00$	Regen Clamp: use with DC-powered stepper \& servo drives; 50W, 24-80 VDC
STP-DRVA-BR-100	$\$ 49.00$	Braking Resistor: use with STP-DRV-RC-050 regen clamp; 100W, 10Ω
*Do not use the regeneration clamp in an atmosphere containing corrosive gases.		

Surestepo $_{\text {Stepping System Drives }}$

SureStep ${ }^{\circledR}$ Microstepping Drives Accessories

SureStep Pro Drive Configuration Software - for Advanced Stepper Drives

Free Download

SureStep Pro configuration software is available as a free download from our website for SureStep advanced drives (STP-DRV-4850 \& -80100).

- Used for easy configuration and setup of the drive, including drive, motion control mode, I/O, motor.
- Serial command languaģe for motor drive control via serial port; eliminates the need for separate motion controllers or indexers; provides easy interface to other industrial devices such as PCs, PLCs and HMIs.
- Easily use the ASCII output commands from most of our PLCs to enable indexing capability.
- Help files include technical data, application information, advanced setup, serial command instructions.
- Runs on 32-bit/64-bit Windows 7 and XP operating systems.

SureStep Drive Configuration Software - for Advanced Stepper Drives		
Part Number	Price	Description
STP-PRO *	$\$ 9.00$	Windows-based configuration software for use with SureStep STP-DRV-4850 and STP-DRV-80100 advanced stepper drives. Requires Windows XP or Windows 7 (32 or $64-$ bit) operating system, minimum 12MB hard drive space, and RS-232 port (sotware also compatible with USB-RS232 adapter).
* Available for purchase on CD or can be downloaded for free from AutomationDirect Web site (www.AutomationDirect. com).		

Sure $_{\text {step }}$. Stepping System Drives

SureStep ${ }^{\circledR}$ Microstepping Drives Dimensions

Dimensions $=$ in [mm]

STP-DRV-6575

STP-DRVA-BR-100

STP-DRV-4035

STP-DRVA-RC-050

If it's in your cabinet, it's online at: www.AutomationDirect.com

Tens of thousands of in-stock quality items

An Extensive Lineup of Products

Starting with the enclosure, we carry everything you need to build an electrical control system, right down to the wire and tools. And we have the devices that go in the panel, such as logic controllers, HMI, drives, relays, and motor controls. If you're maintaining existing systems, we've got great prices on MRO parts such as circuit breakers, fuses, motors, pneumatics and pilot devices. In addition to our catalog all our products are available to order 24/7 at www.automationdirect.com.

Value Pricing

Our everyday prices on industrial control products are well below the list prices of more traditional automation companies because, with our direct business model and focus on high efficiency, AutomationDirect has the lowest overhead in the industry. We pass the savings on to you by offering high-quality products at low prices.

FREE Award Winning Support

Almost 99\% of AutomationDirect customers responding to surveys say they would recommend us to someone else, and they do! And we've been voted tops in service by independent magazine surveys 14 years running.

FREE \& Fast Shipping*

The majority of our products are stocked for same-day shipping, when you place your order by 6 p.m. EST.

* Same day shipping with approved company credit or credit card. Free 2-day (transit) shipping for orders over \$49; other expedited services extra.
See Web site or catalog Terms and Conditions for all details and exceptions.

Surestep ${ }^{\circ}$ Stepping System Motors
 SureStep ${ }^{\circledR}$ Stepping Motors

Surestep Series Part Numbers - Bonnectorized Bipolar Stepping Motors																				
Bipolar Stepping Motors	High Torque Motors												Higher Torque Motors							
								$\begin{aligned} & \dot{\alpha} \dot{L}_{n}^{n} \\ & \sum_{i}^{\prime} \\ & \vdots \\ & \vdots \end{aligned}$												
Price	\$18.00	\$22.00	\$22.00	\$26.00	\$35.50	\$39.50	\$35.50	\$40.00	\$46.50	\$51.00	\$111.00	\$126.00	\$51.50	\$56.00	\$124.00	\$139.00	\$140.00	\$155.00	\$167.00	\$167.00
Shaft	single	dual																		

Surestep Scrics Specifications - Ponnectorized Bipolar Stepping Motors											
Bipolar Stepping Motors		High Torque Motors						Higher Torque Motors			
		$\begin{aligned} & \text { STP-MTR- } \\ & \text { 17040(D) } \end{aligned}$	$\begin{aligned} & \text { STP-MTR- } \\ & \text { 17048(D) } \end{aligned}$	$\begin{aligned} & \text { STP-MTR- } \\ & \text { 17060(D) } \end{aligned}$	$\begin{aligned} & \text { STP-MTR- } \\ & \text { 23055(D) } \end{aligned}$	$\begin{aligned} & \text { STP-MTR- } \\ & \text { 23079(D) } \end{aligned}$	$\begin{aligned} & \text { STP-MTR- } \\ & \text { 34066(D) } \end{aligned}$	STP- MTRH- 23079(D)	STP- MTRH- $34066(D)$	STP- MTRH- $34097(D)$	STP- MTRH- $34127(D)$
NEMA Frame Size		17	17	17	23	23	34	23	34	34	34
* Maximum Holding Torque	(lb-in)	3.81	5.19	7.19	10.37	17.25	27.12	17.87	27.12	50.00	80.50
	(oz•in)	61	83	115	166	276	434	286	434	800	1288
	(N•m)	0.43	0.59	0.81	1.17	1.95	3.06	2.02	3.06	5.65	9.12
Rotor Inertia	(oz.in ${ }^{2}$)	0.28	0.37	0.56	1.46	2.60	7.66	2.60	7.66	14.80	21.90
	(kg.cm ${ }^{2}$)	0.05	0.07	0.10	0.27	0.48	1.40	0.48	1.40	2.71	4.01
Rated Current (A/phase)		1.7	2.0	2.0	2.8	2.8	2.8	5.6	6.3	6.3	6.3
Resistance (Ω /phase)		1.6	1.4	2.0	0.8	1.1	1.1	0.4	0.3	0.3	0.5
Inductance (mH/phase)		3.0	2.7	3.3	2.4	3.8	6.6	1.2	1.5	2.1	4.1
Insulation Class		$130^{\circ} \mathrm{C}$ [266 ${ }^{\circ} \mathrm{F}$] Class B; 300 V rms									
Basic Step Angle		$1.8{ }^{\circ}$									
Shaft Runout (in)		0.002 in [0.051 mm]									
Max Shaft Radial Play @ 1lb load		0.001 in [0.025 mm]									
Perpendicularity		0.003 in [0.076 mm]									
Concentricity		0.002 in [0.051 mm]									
* Maximum Radial Load (lb [kg])		6.0 [2.7]			15.0 [6.8]		39.0 [17.7]	15.0 [6.8]	39.0 [17.7]		
* Maximum Thrust Load (Ib [kg])		6.0 [2.7]			13.0 [5.9]		25.0 [11.3]	13.0 [5.9]	25.0 [11.3]		
Storage Temperature Range		$-20^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ [-4*F to $\left.212^{\circ} \mathrm{F}\right]$									
Operating Temperature Range		$-20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left[-4^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right]$ (motor case temperature should be kept below $100^{\circ} \mathrm{C}\left[212{ }^{\circ} \mathrm{F}\right]$)									
Operating Humidity Range		55\% to 85\% non-condensing									
Product Material		steel motor case; stainless steel shaft(s)									
Environmental Rating		IP40									
Weight (Ib [kg])		0.6 [0.3]	0.7 [0.3]	0.9 [0.4]	1.5 [0.7]	2.2 [1.0]	3.9 [1.7]	2.4 [1.1]	3.9 [1.7]	5.9 [2.7]	8.4 [3.8]
Agency Approvals		CE (complies with EN55014-1 (1993) and EN60034-1.5.11)									
Design Tips		Allow sufficient time to accelerate the load and size the step motor with a 100% torque safety factor. DO NOT disassemble step motors because motor performance will be reduced and the warranty will be voided. DO NOT connect or disconnect the step motor during operation. Mount the motor to a surface with good thermal conductivity, such as steel or aluminum, to allow heat dissipation. Use a flexible coupling with "clamp-on" connections to both the motor shaft and the load shaft to prevent radial and thrust loading on bearings from minor misalignment.									
Accessory Extension Cable		STP-EXT-020						STP-EXTH-020			
* For dual-shaft motors (STP-MTR-xxxxxD): The sum of the front and rear Torque Loads, Radial Loads, and Thrust Loads must not exceed the applicable Torque, Radial, and Thrust load ratings of the motor.											

SureStep ${ }^{\circledR}$ Stepping Motors Mounting Accessory

Mounting Accessory - for NEMA 17 SureStep Series Bjpolar Stepping Motors			
Part Number	Price		
STP-MTRA-RB-85	$\$ 8.00$	Reducer bushing, 8 mm 0 D to 5 mm ID, 16mm Iength, aluminum alloy. Connects NEMA size 17 stepper motors to Koyo TRD-NH and TRD-SH hollow shaft encoders.	

Surestep. ${ }^{\circ}$ Stepping System Motors

SureStep ${ }^{\circledR}$ Motor Torque vs. Speed Charts

STP-MTR-17xxx(D) NEMA 17 Step Motors

STP-MTR-17040(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)

STP-MTR-17048(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)

STP-MTR-17060(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)
\rightarrow-70V Power Supply \quad-*-48V Power Supply \quad-•-32V Power Supply
Speed (rpm)

STP-MTR(H)-23xxx(D) NEMA 23 Step Motors

STP-MTR-23055(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)
—70V Power Supply --48V Power Supply --- 32V Power Supply Speed (rpm)

STP-MTR-23079(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)
—70V Power Supply --48V Power Supply --- 32V Power Supply
Speed (rpm)

STP-MTRH-23079(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)

-70 V Power Supply --48 V Power Supply -- 32V Power Supply
Speed (rpm)

Surestep. Stepping System Motors

SureStep ${ }^{\circledR}$ Motor Torque vs. Speed Charts (continued)

STP-MTR(H)-34xxx(D) NEMA 34 Step Motors

STP-MTR-34066(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)
-70V Power Supply --48V Power Supply --- 32V Power Supply
Speed (rpm)

STP-MTRH-34097(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)

-70 V Power Supply	--48 V Power Supply
Speed (rpm)	

STP-MTRH-34066(D) Torque vs Speed (1.8° motor; $1 / 2$ stepping)

-70 V Power Supply - -48V Power Supply --- 32V Power Supply

STP-MTRH-34127(D) Torque vs Speed (1.8° step motor; $1 / 2$ stepping)
——70V Power Supply - - 48V Power Supply --- 32V Power Supply
Speed (rpm)

Surestep. Stepping System Motors

SureStep ${ }^{\circledR}$ Motor Dimensions and Cabling
 दोयme
Compan
Information Company
Information Drives Soft Starters

Power
Transmission
Motion: Servos and Steppers

Motor Controls

Sensors: Proximity

Sensors: Photoelectric

Sensors: Encoders

Sensors: Limit Switches

Sensors:
Current

Sensors:
Sensors: Temperature

Surestep ${ }^{\circ}$ Stepping System Cables
 SureStep ${ }^{\circledR}$ Cables

Sure Step Series - Stepping System Cables

Cable	Price	Purpose	Length	Use With	Cable End Connectors
STP-EXT-020	$\$ 15.00$	motor to drive extension	20 ft	STP-MTR-xxxxx(D)	pigtail / Molex 43020-0401 connector
STP-EXTH-O20	$\$ 30.00$	motor to drive extension	20 ft	STP-MTRH-xxxxx(D)	pigtail / Molex 39-01-2041 connector
STP-232RJ11-CBL *	$\$ 9.00$	programming/communication	10 ft	STP-DRV-4850 STP-DR-800100	DB9 female / RJ111(6P4C)
STP-232HD15-CBL-2 **	$\$ 10.00$	communication	6.6 ft	STP STP-DRVV-45000	HD 15-pin male / RJ12 6-pin plug
STP-232RJ12-CBL-2 **	$\$ 5.50$	communication	6.6 ft	STP-DRV-4850 STP-DRV-80100	RJ12 6-pin plug / RJ12 6-pin plug

* Programming/communication cable STP-232RJ11-CBLis available for spare or replacement purposes. (One cable is included with each software programmable drive.)
** Refer to the ZIPLinks Wiring Solutions section for complete information regarding cables STP-232HD15-CBL-2 and STP-232RJ12-CBL-2.

Extension Cable Wiring Diagram

Programming Cable Wiring Diagram

Surestep ${ }_{\text {stepping System Power Suplies }}$

SureStep ${ }^{\circledR}$ Power Supplies

Sure Step Series Specifications - Stepping System Power Supplies				
Power Supply	STP-PWR-3204	STP-PWR-4805	STP-PWR-4810	STP-PWR-7005
Price	\$120.00	\$140.00	\$178.00	\$178.00
Input Power (fuse protected *)	$\begin{gathered} \text { 1-phase, } 120 / 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, \\ 150 \mathrm{VA}, \\ \text { Fuse }{ }^{*}: 3 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 1 \text {-phase, } 120 / 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, \\ 350 \mathrm{VA} \\ \text { Fuse }{ }^{*} 5 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 1 \text {-phase, } 120 / 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, \\ 650 \mathrm{VA}, \\ \text { Fuse*: } 8 \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} \text { 1-phase, } 120 / 240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}, \\ 500 \mathrm{VA} \\ \text { Fuse }{ }^{*}: 7 \mathrm{~A} \\ \hline \end{gathered}$
Input Voltage Range (switch selectable)	$120 / 240 \mathrm{VAC} \pm 10 \%$ (Voltage range switch is set to 240 VAC from factory)			
Inrush Current	120 VAC < $12 \mathrm{~A} / 240 \mathrm{VAC}$ < 14 A	120 VAC <20A / $240 \mathrm{VAC}<24 \mathrm{~A}$	120 VAC < 40A / 240 VAC < 50A	
Motor Supply Output (linear unregulated, fuse protected *, and power on LED indicator)	32 VDC @ 4A (fully loaded) 35 VDC @ 1A load 41 VDC @ no load Fuse*: 6A (Electrically isolated from Logic Supply Output)	46.5VDC @ 5 A (fully loaded) 52 VDC @ 1 A load 57.5 VDC @ no load Fuse*: 8A	46.5 VDC @ 10A (tully loaded) 50 VDC @ 1A load 57.5 VDC @ no load Fuse*: 15A	70 VDC @ 5 A (fully loaded) 79 VDC @ 1A load 86.5 VDC @ no load Fuse*: 8A
Logic Supply Output (regulated and power on LED indicator)	$5 \mathrm{VDC} \pm 5 \% @ 500 \mathrm{~mA}$(Electronically Overload Protected)(Electrically isolated from Motor Supply Output)			
Watt Loss	13W	25W	51W	42W
Storage Temperature Range	-55 to $85^{\circ} \mathrm{C}$ [-67 to $\left.185^{\circ} \mathrm{F}\right]$			
Operating Temperature Range	0 to $50^{\circ} \mathrm{C}$ [32 to $\left.122{ }^{\circ} \mathrm{F}\right]$ full rated; derate current 1.1% per degree above $50^{\circ} \mathrm{C} ; 70^{\circ} \mathrm{C}\left[158{ }^{\circ} \mathrm{F}\right]$ maximum			
Humidity	95\% (non-condensing) relative humidity maximum			
Cooling Method	Natural convection (mount power supply to metal surface if possible)			
Dimensions (in [mm])	$\begin{gathered} 4.00 \times 7.00 \times 3.25 \\ {[101.6 \times 177.8 \times 82.6]} \\ \hline \end{gathered}$	$\begin{gathered} 5.00 \times 8.10 \times 3.88 \\ {[127.0 \times 205.7 \times 98.6]} \\ \hline \end{gathered}$	$\begin{gathered} 5.62 \times 9.00 \times 4.62 \\ {[142.7 \times 228.6 \times 117.3]} \end{gathered}$	
Mounting	Mount on either wide or narrow side with machine screws per dimension diagrams			
Weight (lb [kg])	6.5 [2.9]	11 [4.9]	18 [8.3]	16 [7.2]
Connections	Screw Terminals			
Agency Approvals	UL (file \# E181899), CSA, CE			
${ }^{*}$ Fuses to be replaced by qualified service personnel only. Use (1-1/4 $\times 1 / 4$ in) ceramic fast-acting fuses (Edison type ABC from AutomationDirect, or equivalent).				

Power Supply Dimensions

STP-PWR-3204
Power Supply

Dimensions: inches [mm]

Surestep. Stepping System Power Supplies

SureStep ${ }^{\circledR}$ Power Supply Dimensions (continued)

STP-PWR-4805, -4810, -7005 Power Supplies

SureStep Series Dimensions - 48V \& 70V Power Supplies

Power Supply Part Number	Dimensions* (in [mm]*)											Mtg Screw
	A	B	C	D	E	F	G	H	J	K	L	
STP-PWR-4805	8.10 [205.7]	3.88 [98.6]	5.00 [127.0]	0.87 [22.1]	4.67 [118.6]	0.25 [6.4]	7.15 [181.6]	7.75 [196.9]	0.50 [12.7]	3.53 [89.7]	0.200 [5.1]	\#10
STP-PWR-4810 STP-PWR-7005	9.00 [228.6]	4.62 [117.3]	5.62 [142.7]	1.56 [39.6]	4.06 [103.1]	0.35 [8.9]	n/a	8.59 [218.2]	0.50 [12.7]	4.27 [108.5]	9/32 [7.1]	1/4

* mm dimensions are for reference purposes only.

Surestepostepping Systems with PLCs

Controller Compatibility

Motion Fontrol with Automation Ifreot PLBs* and Surestepe Stepping Systems			
PLC Series	Starting at \$199.00	Starting at \$125.00	Starting at \$251.00
	1 axis control**	1-2 axis control***	1-5 axis control***
	DL105	DL05*	DL06*
Built-In PLC Pulse Outputs	1 axis pulse output included with the PLC base unit.		
Maximum Pulse Rate Output	7,000 pulses/sec		10,000 pulses/sec
Target Pulse Range	$-8,388,608$ to $+8,388,607$ pulses		
Minimum Velocity	40 pulses/sec		
Velocity Resolution	10 pulses/sec		
Accel/Decel Range	0.1 to 10 sec		
Position Control	Trapezoidal Profiles		
Velocity Control	Velocity Levels		
I/O Modules Pulse Outputs	Not Applicable for DL105	H0-CTRIO (1 axis per module)	
Maximum Pulse Rate Output		25,000 pulses/sec	
Target Pulse Range		+ / -2.1 billion pulses (31 bits plus sign)	
Minimum Velocity		40 pulses/sec	
Velocity Resolution		10 pulses/sec	
Accel/Decel Range		0.1 to 10 sec	
Position Control		Trapezoidal Profiles (linear \& S-curve ramps)	
Velocity Control		Dynamic Velocity (controlled accel/decel)	
Maximum Number of Modules		1	4
* Any AutomationDirect PLC capable of RS-232 ASCII communication can write serial commands to the SureStep Advanced Microstepping Drives (STP-DRV-4850 \& -80100). These PLCs include DirectLOGIC series DL 05, 06, 250-1, 260, 350, \& 450, as well as CLICK, Do-more and P3000 series. However, we strongly recommend using DL06, DL260, Do-more, CLICK, or Productivity3000 PLCs for serial commands due to their more advanced ASCII instruction set which includes PRINTV and VPRINT commands. ** When using DC output models only. *** When using either DC output model or HO-CTRIO option module.			

Motion Gontrol with Automation Direct PL.Es* and Surestep ${ }^{\text {TM Stepping Systems }}$				
1-16 axis control depending on base size and power supply budget **				
PLC Series	CPUs starting at \$230.00			CPUs starting at \$299.00
	DL205*			Do-more
I/O Modules Pulse Outputs	D2-CTRINT (1 axis per module)	H2-CTRIO (2 axes)	T1H-CTRIO (2 axes per module)	$\begin{gathered} \text { H2-CTRIO2 } \\ (2 \text { axes }) \end{gathered}$
Maximum Pulse Rate Output	5,000 pulses/sec	25,000 pulses/sec	25,000 pulses/sec	250,000 pulses/sec
Target Pulse Range	$-8,388,608$ to $+8,388,607$ pulse	+ / - 2.1 billion pulses		
Minimum Velocity	40 pulses/sec	25 pulses/sec		
Velocity Resolution	10 pulses/sec	1 pulse/sec		
Accel/Decel Range	0.1 to 10 sec			
Position Control	Trapezoidal Profiles (linear and S-curve ramps)			
Velocity Control	Dynamic Velocity (controlled accel/decel)			
Maximum Number of Modules	1	1-8		
* Any AutomationDirect PLC capable of RS-232 ASCII communication can write serial commands to the SureStep Advanced Microstepping Drives (STP-DRV-4850 \& -80100). These PLCs include DirectLOGIC series DL 05, 06, 250-1, 260, 350, \& 450, as well as CLICK, Do-more and P3000 series. However, we strongly recommend using DL06, DL260, Do-more, CLICK, or Productivity3000 PLCs for serial commands due to their more advanced ASCII instruction set which includes PRINTV and VPRINT commands. ** Using D2-CTRINT or Hx-CTRIO modules.				

Sure_step $^{\text {stepping }}$ Steps with PLCs

Controller Compatibility (continued)

Motion Control with PC-hased Control and Sure Step ${ }^{\text {® }}$ Stepping Systems			
1-16 axis control depending on base size and power supply budget *			
Controller Series	PC-based motion control with Think \& Do on your Windows PC		
I/O Modules Pulse Outputs	$\begin{gathered} \text { H2-CTRIO } \\ \text { (2 axes per module) } \end{gathered}$	T1H-CTRIO (2 axes per module)	$\begin{gathered} \text { H2-CTRIO2 } \\ (2 \text { axes }) \\ \hline \end{gathered}$
Maximum Pulse Rate Output	25,000 pulses/sec	25,000 pulses/sec	250,000 pulses/sec
Target Pulse Range	+/-2.1 billion pulses		
Minimum Velocity	25 pulses/sec		
Velocity Resolution	1 pulse/sec		
Accel/Decel Range	0.1 to 10 sec		
Position Control	Trapezoidal Profiles (linear and S-curve ramps)		
Velocity Control	Dynamic Velocity (controlled accel/decel)		
Maximum Number of Modules	1-8		
* Using Hx-CTRIO modules			

Linear Motion Slides and Components

The three SureMotion families of linear slide actuators easily mate to SureStep motors and other NEMA motors. Everything you need to mount your SureStep motor is included!
These units are an excellent solution for many applications such as pick and place, packaging, assembly automation and other motion control operations.

18 models, with travels
 from 6 to 36 inches
 Ready to mount NEMA 17, 23 or 34 motors

-

Sure Linear Motion Products
 Product Overview

Actuator Overview

SureMotion linear motion offers both motor-ready actuator assemblies, and a nice assortment of sliding components and accessories to provide a wide variety of motion control solutions.

Linear Slide Actuator Comparisons

Actuator Series Comparisons						
Actuator Series	Actuator Type	Drive Type	Max Load Capacity (Ib)	Max Speed (in/s)	Travel (in)	Relative Price
LARSD2	Twin Round Shaft	Ball Screw	920	6	12,24	$\$ \$ \$ \$$
LACP	Compact Slide	Lead Screw	125	20	$6,12,24,36$	$\$ \$$
LAVL	Value Slide	Lead Screw	110	15	$6,12,18,24$	$\$$

Available Multi-Axis Configurations
X-Y Axis Configurations

A. (2) LAVL-60Txxxx
B. (1) LAVLACC-004
A. (2) LACP-16Txxxx
B. (1) LACPACC-004

X-Z Axis Configuration

A. (2) LAVL-60Txxxx
B. (1) LAVLACC-005

$X-Y-Z$ Axis Configuration

A. (3) LAVL-60Txxxx
B. (1) LAVLACC-004
C. (1) LAVLACC-005

Sure Linear Motion Products
 Twin Round Shaft Slide Actuators

LARSD2-08T12BP2C

Features

- High-accuracy ball screw
- Continuously-supported ģuide rails
- Replacement components available
- Ready for NEMA 23 motor
- AISI 1566 Carbon Steel, 60 RC Round Shafts
- AISI 1045 Carbon Steel, 56 RC Ball Screw

Description

Continuously-supported round rail slide with ball screw actuation provides a very robust precision linear motion. Units are complete except for a drive motor.

Applications

- Positioning systems
- Heavy loads

Twin Round Shaft Slide Actuator Specifications									
Part Number	Price	Drive Type	Drive Pitch	Drive Screw Efficiency (\%)	Payload Inertia Factor (in²)	Constant System Inertia (lb $\mathrm{m}^{-i n^{2}}$)	Travel	Weight (lb)	Fits Motor
LARSD2-08T12BP2C	\$2,399.00	Ball screw	0.2 in	90	0.001	0.11	12in	10.5	NEMA 23
LARSD2-08T24BP2C	\$2,589.00					0.16	24in	14.0	

System Inertia Calculation:

To calculate the inertia reflected to the motor in a particular actuator, multiply the carriage payload by the payload inertia factor and then add the constant system inertia value for that actuator. The constant system inertia value for each system includes the inertia of the shaft coupler, carriage, and lead/ball screw.

- The payload must be in units of lb_{m}.

Surebimotion

Linear Motion Products

Twin Round Shaft Slide Actuators

LARSD2-08TxxBP2C
See our website www.AutomationDirect.com for complete Engineering drawings.

Accessories
LARSACC-015(16)
LARSACC-013(014)
Twin Round Shaft Slide Actuator Accessories

| Part Number | Price | Description | Weight (Ib) |
| :--- | :---: | :--- | :--- | :--- |
| LARSACC-010 | $\$ 24.00$ | SureMotion linear ball bushing, open type, $1 / 2$ inch inside diameter, with seals, self-aligning. | 0.5 |
| LARSACC-013* | $\$ 639.00$ | SureMotion repair kit, for use with LARSD2-08T12BP2C actuators. Ballscrew, ballnut, end bearings and grease tube included. | |
| LARSACC-014* | $\$ 849.00$ | SureMotion repair kit, for use with LARSD2-08T24BP2C actuators. Ballscrew, ballnut, end bearings and grease tube included. | 3.0 |
| LARSACC-015* | $\$ 239.00$ | SureMotion motor adapter, NEMA 23 frame. For use with LARSD2-08 series actuators. $1 / 4 \times 1 / 4$ inch coupler included. | 5.0 |
| LARSACC-016* | $\$ 289.00$ | SureMotion motor adapter, NEMA 34 frame. For use with LARSD2-08 series actuators. $1 / 2 \times 1 / 4$ inch coupler included. | 1.0 |

* Repair kits and NEMA 23/34 motor adapter contain replacement components that are the same as the original components in the actuator assemblies.

Sure Linear Motion Products Compact Slide Actuators
 Description

Self-contained linear actuator designed for light loads in harsh or wet conditions in a very small package. A stainless steel lead screw is embedded in a hard-coated aluminum shaft specially machined to match sliding elements.

Applications

- Space-limiting applications
- Harsh or wet environments
- Light loads
- Speeds up to 20 inches per second
- AISI 6061-T6 Aluminum Alloy, Hard Anodized Slide Shaft. Hard Anodizing Depth .0005-.004, 60-65 RC
- AISI 303 Stainless Steel Lead Screw
- Compact design
- Replacement components available
- Ready for NEMA 17 motor
- End-of-travel switch mounts

Sure Linear Motion Products
 OMOtion compact Slide Actuators
 Dimensions (in [mm])

LACP-16TxxLxx

See our website www.AutomationDirect.com for complete Engineering drawings.

Accessories

Compact Slide Actuator Accessories								
Part Number	Price	Description	Weight (Ib)					
LACPACC-001	$\$ 355.00$	SureMotion motor adapter, NEMA 23 frame. For use with LACP-16 series actuators. 1/4 inch x 4mm coupler included.	0.5					
LACPACC-002*	$\$ 650.00$	SureMotion repair kit, for use with LACP-16TxxLP5 actuators. Nut, bushings, end bearings and oil syringe included.	0.5					
LACPACC-003**	$\$ 650.00$	SureMotion repair kit, for use with LACP-16TxxL1 actuators. Nut, bushings, end bearings and oil syringe included.	0.5					
LACPACC-004	$\$ 73.00$	SureMotion mounting plate, XY type. For use with LACP-16 series actuators.	0.5					
LACPACC-005	$\$ 94.00$	SureMotion mounting plate, XY type. For use with LACP-16 and LARSB1 series actuators.	0.5					
${ }^{*}$ Repair kits contain replacement components that are the same as the original components in the actuator assemblies.								

Sure Linear Motion Products Value Linear Slide Actuators
 Description

Low-cost linear actuator using the latest in sliding element technology; hard-coated aluminum guide shafts. This versatile unit can be mounted horizontally, vertically, or inverted without loss of load capacity.

LAVL-60T06LP2

Features

- Small footprint
- Adjustable carriaģe pre-load
- Hard-coated aluminum slides
- Replacement components available
- Ready for NEMA 17 motor
- End-of-travel switch mounts

- AISI 6061-T6 Aluminum Alloy, Hard Anodized Slide Shaft. Hard Anodizing Depth .0005-.004, 60-65 RC
- AISI 304 Stainless Steel Lead Screw

Applications

- Harsh or wet environments
- X-Y-Z positioning systems

Value Linear Slide Actuator Specifications									
Part Number	Price	Drive Type	Drive Pitch	Drive Screw Efficiency (\%)	Payload Inertia Factor (in²)	Constant System Inertia ($\mathrm{lb}_{\mathrm{m}} \mathrm{in}^{2}$)	Travel	Weight (Ib)	Fits Motor
LAVL-60T06LP2	\$789.00	$\begin{aligned} & \text { Lead } \\ & \text { screw } \end{aligned}$	0.2 in	56	0.001	0.017	6 in	2.0	NEMA 17
LAVL-60T12LP2	\$989.00					0.02	12in	2.8	
LAVL-60T18LP2	\$1,199.00					0.024	18in	3.5	
LAVL-60T24LP2	\$1,399.00				0.0063	0.027	24in	4.2	
LAVL-60T06LP5	\$789.00		0.5 in	71	0.0063	0.02	6 in	2.0	
LAVL-60T12LP5	\$989.00					0.023	12in	2.8	
LAVL-60T18LP5	\$1,199.00					0.026	18in	3.5	
LAVL-60T24LP5	\$1,399.00					0.03	24in	4.2	

System Inertia Calculation:

To calculate the inertia reflected to the motor in a particular actuator, multiply the carriage payload by the payload inertia factor and then add the constant system inertia value for that actuator. The constant system inertia value for each system includes the inertia of the shaft coupler, carriage, and lead/ball screw.

- The payload must be in units of lb_{m}.

Sure Linear Motion Products
 motion
 Value Linear Slide Actuators
 Dimensions (in [mm])

LAVL-60TxxLPx
See our website www.AutomationDirect.com for complete Engineering drawings.
Accessories

LAVLACC-003

LAVLACC-001(002)

LAVLACC-005

LAVLACC-004

Value Linear Slide Actuator Accessories						
Part Number	Price	Description	Weight (Ib)			
LAVLACC-001*	$\$ 289.00$	SureMotion repair kit, for use with LAVL-60TxxLP2 actuators. Nut, bushings, end bearings and oil syringe included.				
LAVLACC-002*	$\$ 289.00$	SureMotion repair kit, for use with LAVL-60TxxLP5 actuators. Nut, bushings, end bearings and oil syringe included.	0.5			
LAVLACC-003	$\$ 239.00$	SureMotion motor adapter, NEMA 23 frame. For use with LAVL-60 series actuators. $1 / 4$ inch x 5 mm coupler included.	0.5			
LAVLACC-004	$\$ 112.00$	SureMotion mounting plate, XY type. For use with LAVL-60 series actuators.	1.0			
LAVLACC-005	$\$ 252.00$	SureMotion mounting plate, XZ type. For use with LAVL-60 series actuators.	0.5			
*Repair kits contain replacement components that are the same as the original components in the actuator assemblies.	1.0					

Sure Linear Motion Products

LARSB1-12L12C

Description

Round-shaft sliding elements can be combined with other elements to build a huge variety of machine mechanisms. Available in both end- and continuouslysupported shafts.

Features

- Linear ball bearings
- High quality clear anodized aluminum blocks
- AISI 1566 Carbon Steel, 60 RC Round Shafts

\left.| Slide Rail Systems Load Ratings | | | |
| :--- | :--- | :--- | :--- |
| Part Number | Normal (Ib) | Transverse | |
| | Down | Up | |
| (lb) | | | |$\right]$

End-Supported Slide Rail Systems and Accessories

End-Supported Slide Rail Systems and Accessories			
Part Number	Price	Description	Weight (lb)
LARSA1-08L12C	\$269.00	SureMotion, linear slide assembly, end supported, round shaft, $1 / 2$ inch diameter, 12 inch length, carbon steel. (2) single pillow blocks included.	1.5
LARSA1-08L24C	\$279.00	SureMotion, linear slide assembly, end supported, round shaft, $1 / 2$ inch diameter, 24 inch length, carbon steel. (2) single pillow blocks included.	2.0
LARSA1-08L36C	\$299.00	SureMotion, linear slide assembly, end supported, round shaft, $1 / 2$ inch diameter, 36 inch length, carbon steel. (2) single pillow blocks included.	2.7
LARSA1-12L12C	\$339.00	SureMotion, linear slide assembly, end supported, round shaft, $3 / 4$ inch diameter, 12 inch length, carbon steel. (2) single pillow blocks included.	3.0
LARSA1-12L24C	\$359.00	SureMotion, linear slide assembly, end supported, round shaft, $3 / 4$ inch diameter, 24 inch length, carbon steel. (2) single pillow blocks included.	4.5
LARSA1-12L36C	\$379.00	SureMotion, linear slide assembly, end supported, round shaft, $3 / 4$ inch diameter, 36 inch length, carbon steel. (2) single pillow blocks included.	6.0
LARSA1-16L12C	\$454.00	SureMotion, linear slide assembly, end supported, round shaft, 1 inch diameter, 12 inch length, carbon steel. (2) single pillow blocks included.	6.0
LARSA1-16L24C	\$484.00	SureMotion, linear slide assembly, end supported, round shaft, 1 inch diameter, 24 inch length, carbon steel. (2) single pillow blocks included.	8.5
LARSA1-16L36C	\$509.00	SureMotion, linear slide assembly, end supported, round shaft, 1 inch diameter, 36 inch length, carbon steel. (2) single pillow blocks included.	11.0
LARSACC-001*	\$55.00	SureMotion single pillow block, closed type, linear ball bushing, $1 / 2$ inch inside diameter.	0.5
LARSACC-002*	\$67.00	SureMotion single pillow block, closed type, linear ball bushing, $3 / 4$ inch inside diameter.	1.0
LARSACC-003*	\$96.00	SureMotion single pillow block, closed type, linear ball bushing, 1 inch inside diameter.	1.5
LARSACC-007*	\$20.00	SureMotion linear ball bushing, closed type, $1 / 2$ inch inside diameter, with seals, self-aligning.	0.5
LARSACC-008*	\$24.00	SureMotion linear ball bushing, closed type, $3 / 4$ inch inside diameter, with seals, self-aligning.	0.5
LARSACC-009*	\$39.00	SureMotion linear ball bushing, closed type, 1 inch inside diameter, with seals, self-aligning.	0.5
Continuously-Supported Slide Rail Systems and Accessories			
LARSB1-08L12C	\$279.00	SureMotion, linear slide assembly, continuously supported, round shaft, $1 / 2$ inch diameter, 12 inch length, carbon steel. (2) single pillow blocks included.	2.0
LARSB1-08L24C	\$347.00	SureMotion, linear slide assembly, continuously supported, round shaft, $1 / 2$ inch diameter, 24 inch length, carbon steel. (2) single pillow blocks included.	3.0
LARSB1-08L36C	\$431.00	SureMotion, linear slide assembly, continuously supported, round shaft, 1/2 inch diameter, 36 inch length, carbon steel. (2) single pillow blocks included.	4.5
LARSB1-12L12C	\$348.00	SureMotion, linear slide assembly, continuously supported, round shaft, $3 / 4$ inch diameter, 12 inch length, carbon steel. (2) single pillow blocks included.	4.0
LARSB1-12L24C	\$454.00	SureMotion, linear slide assembly, continuously supported, round shaft, $3 / 4$ inch diameter, 24 inch length, carbon steel. (2) single pillow blocks included.	6.2
LARSB1-12L36C	\$556.00	SureMotion, linear slide assembly, continuously supported, round shaft, $3 / 4$ inch diameter, 36 inch length, carbon steel. (2) single pillow blocks included.	9.0
LARSB1-16L12C	\$451.00	SureMotion, linear slide assembly, continuously supported, round shaft, 1 inch diameter, 12 inch length, carbon steel. (2) single pillow blocks included.	6.5
LARSB1-16L24C	\$583.00	SureMotion, linear slide assembly, continuously supported, round shaft, 1 inch diameter, 24 inch length, carbon steel. (2) single pillow blocks included.	10.5
LARSB1-16L36C	\$703.00	SureMotion, linear slide assembly, continuously supported, round shaft, 1 inch diameter, 36 inch length, carbon steel. (2) single pillow blocks included.	14.5
LARSACC-004*	\$58.00	SureMotion single pillow block, open type, linear ball bushing, 1/2 inch inside diameter.	0.5
LARSACC-005*	\$74.00	SureMotion single pillow block, open type, linear ball bushing, $3 / 4$ inch inside diameter.	1.0
LARSACC-006*	\$103.00	SureMotion single pillow block, open type, linear ball bushing, 1 inch inside diameter.	1.5
LARSACC-010*	\$24.00	SureMotion linear ball bushing, open type, 1/2 inch inside diameter, with seals, self-aligning.	0.5
LARSACC-011*	\$30.00	SureMotion linear ball bushing, open type, $3 / 4$ inch inside diameter, with seals, self-aligning.	0.5
LARSACC-012*	\$51.00	SureMotion linear ball bushing, open type, 1 inch inside diameter, with seals, self-aligning.	0.5
* Bushings and pillow blocks are replacement components that are the same as the original components in the slide assemblies.			

Sure
 onotion

Linear Motion Products
 Round-Shaft Slide Elements

Dimensions (in [mm])

LARSA1-xxLxxC \& LARSB1-xxLxxC*

PART \#	A	B	C	øD	E	F
LARSA1-08L12C	12.0 [304.8]	2.00 [50.8]	1.70 [42.9]	0.50 [12.7]	2.00 [50.8]	1.69 [42.9]
LARSA1-08L24C	24.0 [609.6]					
LARSA1-08L36C	36.0 [914.4]					
LARSA1-12L12C	12.0 [304.8]	2.50 [63.5]	2.19 [55.6]	0.75 [19.0]	2.75 [69.9]	2.06 [52.4]
LARSA1-12L24C	24.0 [609.6]					
LARSA1-12L36C	36.0 [914.4]					
LARSA1-16L12C	12.0 [304.8]	3.06 [77.8]	2.69 [68.3]	1.00 [25.4]	3.25 [82.6]	2.81 [71.5]
LARSA1-16L24C	24.0 [609.6]					
LARSA1-16L36C	36.0 [914.4]					
LARSB1-08L12C*	12.0 [304.8]	1.50 [38.1]	1.81 [46.0]	0.50 [12.7]	2.00 [50.8]	1.50 [38.1]
LARSB1-08L24C*	24.0 [609.6]					
LARSB1-08L36C*	36.0 [914.4]					
LARSB1-12L12C*	12.0 [304.8]	1.75 [44.5]	2.44 [61.9]	0.75 [19.0]	2.75 [69.9]	1.88 [47.6]
LARSB1-12L24C*	24.0 [609.6]					
LARSB1-12L36C*	36.0 [914.4]					
LARSB1-16L12C*	12.0 [304.8]	2.13 [54.0]	2.94 [74.6]	1.00 [25.4]	3.25 [82.6]	2.63 [66.7]
LARSB1-16L24C*	24.0 [609.6]					
LARSB1-16L36C*	36.0 [914.4]					

*LARSA1-xxLxxC is shown in drawing. LARSB1-xxLxxC has different appearance, but same dimensions as shown in this table.

See our website www.AutomationDirect.com for complete Engineering drawings.

Learn our products for free!

AutomationDirect's YouTube channel, $\underline{\text { www.youtube.com/automationdirect, is expanding rapidly with content that falls into three distinct }}$ categories. (Videos are also available at www.automationdirect.com/videos.)

Quick and Easy How to Videos

"How to" product focused tutorials serve up short (two to five minute) snapshots that give specific guidance on using products, particularly ones with programming software. You'll find over 80 videos on C-more micro touch panel configuration, and many newly posted topics for the Do-more and Productivity3000 controllers, including MATH and DATA instructions, as well as the high-speed counter I/O modules.

In-depth Product Tutorials

More in-depth video series take you from zero to detailed knowledge on a host of popular topics. These series may contain up to 15 videos, leading you through the basics of PLCs, motion control, and process (PID) control, using AutomationDirect products integrated into demonstration systems that relate to real applications.

Learn About New Products

"Kickstart" videos are shoı overviews focusing on newl introduced products - you'll see th parts, learn the basics of the feature and applications, all in just a feı minutes. They're perfect for gettin the highlights of what's new fror AutomationDirect.

Rely on our experts and learn at your convenience: www.automationdirect.com/videos

NEMA Planetary Gearboxes

The SureGear PGCN series easily mates to SureStep motors, and other NEMA frame motors. Everything you need to mount your SureStep motor is included!
It is the perfect solution for applications such as material other motion control applications requiring a NEMA handling, pick and place, automation, packaging, and input/output interface.

15 models, five gear ratios available in NEMA 17, 23 and 34 frame sizes

Tough on the outside, precision quality on the inside

Sure

SureGear ${ }^{\circledR}$ Planetary Gear Reducers for NEMA Motors - Overview

The SureGear PGCN series is a great gearbox (gear reducer) value for servo, stepper, and other motion control applications requiring a NEMA size input/output interface. It offers the best quality available for the price point.

Features

-Wide range of ratios ($5,10,25,50$, and $100: 1$)

- Low backlash of 30 arc-min or less
- 20,000 hour service life
- Maintenance free; requires no additional lubrication
- NEMA sizes 17,23 , and 34
- Includes hardware for mounting to SureStep stepper motors
- Optional shaft bushings available for mounting to other motors

Applications

- Material handling
- Pick and place
- Automation
- Packaging
- Other motion control applications requiring a NEMA input/output

SureGear ${ }^{(8)}$ NEMA Planctary Gearboxes														
Model-Specific Specifications														
Part Number	Price	읓	NEMA Frame Size	皆	$\begin{aligned} & \text { Maximum Acceleration Torque } \\ & \text { (N.m [lb-in]) } \end{aligned}$							o 른 U 는		Fits SureStep Stepper Motor
PGCN17-055M	\$209.00	5:1		6.5 [58]	13 [115]	26 [230]	<25			0.8 [7.5]	0.0096 [0.003]	94	0.45 [1.0]	
PGCN17-105M	\$214.00	10:1		5.0 [44]	10 [89]	20 [177]	<25			0.5 [4.4]	0.0078 [0.003]	94	0.45 [1.0]	
PGCN17-255M	\$267.00	25:1	17	16 [142]	20 [177]	32 [283]	<30			0.8 [7.5]	0.0096 [0.003]	92	0.55 [1.2]	STP-MTR-170xx(D)
PGCN17-505M	\$267.00	50:1		16 [142]	20 [177]	32 [283]	<30			0.8 [7.5]	0.0078 [0.003]	92	0.55 [1.2]	
PGCN17-1005M	\$267.00	100:1		5.0 [44]	10 [89]	20 [177]	<30			0.5 [4.4]	0.0078 [0.003]	92	0.55 [1.2]	
PGCN23-0525	\$285.00	5:1		6.5 [58]	13 [115]	26 [230]	<20	361 [81]	$298[67]$	0.9 [8.0]		94	0.45 [1.0]	
PGCN23-1025	\$285.00	10:1		5.0 [44]	10 [89]	20 [177]	<20			0.6 [5.3]		94	0.45 [1.0]	
PGCN23-2525	\$310.00	25:1	23	16 [142]	20 [177]	32 [283]	<25			0.9 [8.0]	0.04 [0.014]	92	0.55 [1.2]	STP-MTR(H)-230xx(D)
PGCN23-5025	\$310.00	50:1		16 [142]	20 [177]	32 [283]	<25			0.9 [8.0]		92	0.55 [1.2]	
PGCN23-10025	\$310.00	100:1		5.0 [44]	10 [89]	20 [177]	<25			0.6 [5.3]		92	0.55 [1.2]	
PGCN34-0550	\$335.00	5:1		26 [230]	44 [389]	84 [743]	<15			2.4 [21.2]	0.36 [0.123]	94	1.1 [2.4]	
PGCN34-1050	\$335.00	10:1		16 [142]	24 [212]	62 [549]	<15			1.3 [11.5]	0.34 [0.116]	94	1.1 [2.4]	
PGCN34-2550	\$394.00	25:1	34	$42[372]$	52 [460]	84 [743]	<20	476 [107]	425 [96]	2.4 [21.2]	0.36 [0.123]	92	1.4 [3.1]	STP-MTR(H)-34xxx(D)
PGCN34-5050	\$394.00	50:1		$42[372]$	52 [460]	84 [743]	<20			2.4 [21.2]	0.34 [0.116]	92	1.4 [3.1]	
PGCN34-10050	\$394.00	100:1		16 [142]	24 [212]	62 [549]	<20			1.3 [11.5]	0.34 [0.116]	92	1.4 [3.1]	
Specifications Applicable to All PGCN Gearboxes														
Nominal Speed (rpm)			3500											
Maximum Input Speed (rpm)			6000											
Mounting Orientation			can be mounted in any orientation											
Environmental Rating			IP64											
Operating Temperature			-20 to $90^{\circ} \mathrm{C}$ [-4 to $\left.194^{\circ} \mathrm{F}\right]$											
Lubrication			Mineral Grease EPO											
Service Life (hrs)			$>20,000$											
NOTE: SureGear PGCN gearboxes (gear reducers) are not designed for back driving.														

Dimensions (dimensions $=\mathbf{m m}[\mathrm{in}]$)

PGCN17-xxxx SureGear Dimension Drawing

PGCN23-xxxx SureGear Dimension Drawing

PGCN34-xxxx SureGear Dimension Drawing

SureGear ${ }^{(8)}$ NEMA Planctary Gearbox Dimensions (dimensions = mm [in])					
NEMA-17 Part Number	PGCN17-055M	PGCN17-105M	PGCN17-255M	PGCN17-505M	PGCN17-1005M
Dimension A	84.0 [3.31]		99.8 [3.93]		
Dimension B	109.4 [4.31]		125.2 [4.93]		
NEMA-23 Part Number	PGCN23-0525	PGCN23-1025	PGCN23-2525	PGCN23-5025	PGCN23-10025
Dimension A	77.6 [3.06]		95.2 [3.75]		
Dimension B	103.0 [4.06]		120.6 [4.75]		
NEMA-34 Part Number	PGCN34-0550	PGCN34-1050	PGCN34-2550	PGCN34-5050	PGCN34-10050
Dimension A	99.3 [3.91]		121.3 [4.78]		
Dimension B	131.1 [5.16]		153.0 [6.02]		

Sure
 *gear

Accessories

Typical PGCN Accessory Screws

Surchear ${ }^{(8)}$ NEMA Planctary Gearbox Accessories			
Part Number	Price	Description	Fits SureGear NEMA Planetary Gearbox
PGCN17-SK	\$3.00	Mounting screws, replacement, for SureGear NEMA size 17 gearboxes (Package of 4)	
PGCN17-BSH5M	\$6.00	Motor shaft bushing for SureGear NEMA size 17 gearboxes, fits 5 mm diameter motor shaft	
PGCN17-BSH8M	\$6.00	Motor shaft bushing for SureGear NEMA size 17 gearboxes, fits 8 mm diameter motor shaft	PGCN17-xxxx
PGCN17-BSH9M	\$6.00	Motor shaft bushing for SureGear NEMA size 17 gearboxes, fits 9 mm diameter motor shaft	
PGCN17-BSH25	\$6.00	Motor shaft bushing for SureGear NEMA size 17 gearboxes, fits $1 / 4$ inch diameter motor shaft	
PGCN23-SK	\$3.00	Mounting screws, replacement, for SureGear NEMA size 23 gearboxes (Package of 4)	
PGCN23-BSH8M	\$6.00	Motor shaft bushing for SureGear NEMA size 23 gearboxes, fits 8 mm diameter motor shaft	
PGCN23-BSH9M	\$6.00	Motor shaft bushing for SureGear NEMA size 23 gearboxes, fits 9mm diameter motor shaft	PGCN23-xxxx
PGCN23-BSH25	\$6.00	Motor shaft bushing for SureGear NEMA size 23 gearboxes, fits $1 / 4$ inch diameter motor shaft	
PGCN23-BSH37	\$6.00	Motor shaft bushing for SureGear NEMA size 23 gearboxes, fits 3/8 inch diameter motor shaft	
PGCN34-SK	\$3.00	Mounting screws, replacement, for SureGear NEMA size 34 gearboxes (Package of 4)	
PGCN34-BSH9M	\$6.00	Motor shaft bushing for SureGear NEMA size 34 gearboxes, fits 9 mm diameter motor shaft	
PGCN34-BSH11M	\$6.00	Motor shaft bushing for SureGear NEMA size 34 gearboxes, fits 11 mm diameter motor shaft	PGCN34-xxxx
PGCN34-BSH37	\$6.00	Motor shaft bushing for SureGear NEMA size 34 gearboxes, fits $3 / 8$ inch diameter motor shaft	
PGCN34-BSH50	\$6.00	Motor shaft bushing for SureGear NEMA size 34 gearboxes, fits $1 / 2$ inch diameter motor shaft	

Pushbuttons
and Lights

Sure servo AC Servo Systems

SureServo ${ }^{\circledR}$ AC servo systems

The SureServo family of brushless servo systems from AutomationDirect is fully digital and offers a rich set of features at dynamite prices. Choose from eight standard servo motors that are used in combination with one of three standard servo drives.

- Eight standard systems from 100 W to 3 kW
- Use with any AutomationDirect PLC; or any other host controller
- Drives feature on-board indexer and adaptive tuning modes
- Free setup software
-30-day money-back guarantee
- Two year warranty

Why use a servo?

The SureServo servo systems provide the highest possible level of performance for precise control of position, velocity, and torque. Compared to lower cost stepping systems, the SureServo products provide:

- More torque at higher speeds (up to $5,000 \mathrm{rpm}$)
- Broader range of power (up to 3 kW)
- Higher response with closed-loop control (high hit rate without stalling or lost position)

SureServo family

The SureServo family is designed for flexibility and quick implementation. SureServo drives accept a wide range of command sources:

- Built-in motion controller w/preset position, velocity or torque
- Select presets with switch inputs and/or the multi-drop Modbus serial interface
- Position commands with "pulse and direction" or "count up and down" format
- Analog voltage Velocity or Torque command

For configuration, tuning and diagnostics, use the drive's integrated keypad / display or take advantage of the free SureServo Pro ${ }^{\circledR}$ PC-based software. Tune the system easily with adaptive auto-tuning selections or a manual mode.
Adapt to diverse applications with configurable I/O, including eight digital inputs, five digital outputs, two analog monitors and a scalable encoder output.

- Encoder follower

semo systems	Antamationireat	Alemparale
Digatseroome	¢9488.00	${ }_{\text {s11,34.an }}$
	${ }^{53} 35.00$.	\$555.00
	sisanion e	S263.00
\%eataic abe		
come		sil1.00 ${ }^{\text {a }}$
Comporamossameme	${ }_{\text {FRE }}^{\text {ERE }}$ (S82.00
	s986, 00	S2, 434.00

Sure servo AC Servo Systems

 3 Standard Drives ... 8 Standard Motors ... 100W to 3kW over 50 gearboxes (both inline and right angle) with four ratioCompany Information

Drive features

- Main Power and Control Power Inputs
- Main Power: 230 VAC 1-phase/3-phase (2 kW and 3 kW systems are 3-phase only)
- Control Power: 230 VAC Single Phase; $50 / 60$ Hz
- Fully digital with up to $\mathbf{4 5 0} \mathbf{~ H z}$ velocity loop response
- Easy setup and diagnostics with built-in keypad/display or the SureServo Pro PC-based software
- Five-in-one command options include:
- $\pm 10 \mathrm{~V}$ torque or velocity command
- Pulse train or master encoder position command (accepts line driver or open collector) with electronic gुearing
- Built-in indexer for position control using 8 preset positions and/or position setpoint with serial Modbus
- Tuning aids include inertia estimation and easy tuning for up to 10 levels of response
- Optically isolated digital inputs (8) and outputs (5), analog outputs for monitor signals (2), and line driver output for encoder (with scalable resolution)

SureServo tuning technology

The SureServo drive closes the loop on current, velocity, and position (depending on control mode selection). Proportional gain, integral gain, feed forward compensation, command low pass filter, and a notch filter for resonance suppression are available. There are three tuning modes:

1. "Manual Mode" for user-defined adjustments
2. "Easy Mode" for default settings over a wide range of programmed inertia with 10 response levels
3. "Auto Mode" for automatic adjustment using an estimated (or measured) value of inertia

SureServo built-in motion controller

While the SureServo drives can accept traditional commands from host controls, they can also provide their own internal motion control. For example, up to eight index moves can be pre-defined and stored in the drive and then selected and executed using up to three discrete inputs. The predefined index profiles can also be changed via serial communications. The motion can be incremental or absolute (homing routines are available in the drive) and acceleration can be linear or S-curve.
Multiple drives can be daisy-chained and addressed separately using the drive's serial port. This allows very simple yet powerful control of multi-axis processes that do not need precise path control but only precise starting and stopping points. Applications include press feeds, auger fillers, rotary tables, robots for pick and place, test or assembly operations, drilling, cutting, tapping, and similar applications using simple index moves for single or multi-axis motion.

SureServo
 Optional Holding Brake

Each SureServo motor can be ordered with an optional 24VDC spring-set holding brake that holds the motor in place when power is removed.

SureGear® Precision Gearboxes for Servo motors

 Inertia balancing issue in your design?The SureGear PGA series easily mates to SureServo motors. Everything you need to mount your SureServo motor is included!

- Four gear ratios available ($5,10,15,25: 1$)
- Mounting hardware included for attaching to SureServo motors
- Industry-standard mounting dimensions
- Thread-in mounting style
- Best-in-class backlash (5 arc-min)
- 5-year warranty

Sure servo AC Servo Systems

Iraditional Commanal Sources

Built-in Indexer (Point-to-Point Position Control)

Sure servo $_{\sim}$ AC Servo Systems

How to select and apply SureServo systems

The primary purpose of the AC servo system is to precisely control the motion of the load. The most fundamental considerations in selecting the servo system are "reflected" load inertia, servo system maximum speed requirement, servo system continuous torque requirement, and servo system peak torque requirement. In a retrofit application, select the largest torque SureServo system that most closely matches these parameters

1. "Reflected" load inertia

The inertia of everything attached to the servo motor driveshaft needs to be considered and the total "reflected" inertia needs to be determined. This means that all elements of any mechanical transmission and load inertia need to be translated into an equivalent inertia as if attached directly to the motor driveshaft. The ratio of "reflected" load inertia to motor inertia needs to be carefully considered when selecting the servo system.
In general, applications that need high response or bandwidth
for the system being replaced. In a new application, these parameters should be determined through calculation and/or measurement.

AutomationDirect has teamed with Copperhill Technologies to provide free servo-sizing software. "VisualSizer-SureServo" software will assist in determining the correct motor and drive for your application by calculating the reflected load inertia and required speed and torque based on the load configuration. "VisualSizer-SureServo" software can be downloaded from www. sureservo.com/downloads.htm.
Information for selecting SureServo systems is also included in Appendix B of the SureServo User Manual, which can be downloaded from the AutomationDirect.com website.
will benefit from keeping the ratio of load inertia to motor inertia as low as possible and ideally under 10:1. Systems with ratios as high as 200:1 can be implemented, but corresponding lower bandwidth or responsiveness must be accepted. The servo response including the attached load inertia is determined by the servo tuning. SureServo systems may be tuned manually, adaptively with measurement of the load inertia, or set with default tuning based on a programmed value of load inertia.

2. Torque and speed

With knowledge of the motion profile and any mechanical transmission between the motor and load, calculations can be made to determine the required servo motor continuous torque, peak torque, and maximum motor speed. The required amount of continuous torque must fall inside the continuous operating region of the system torquespeed curve (you can check the continuous torque at the average speed of the motion profile). The required amount of peak torque must also fall within the servo system's intermittent operating region of the system torque-speed curve (you need to check this value at the required maximum speed).

Sure servo $_{\sim}^{0}$ AC Servo Systems

Application tip coupling considerations

The SureServo motors have keyless shafts that are designed for use with clamp-on or compression style couplings. Couplings using keys and/or set screws should NOT be used with SureServo motors as they are likely to come loose or damage the motor shaft. "Servo-grade" clamp-on or compression style couplings are usually the best choice when you consider the stiff-
ness, torque rating, and inertia. Higher stiffness (lb-in/radian) is needed for better response but there is a trade-off between the stiffness and the added inertia of the coupling. Concerning the torque rating of the coupling, use a safety factor of 1.25 over the SureServo peak torque requirement of your application.

Coupling Suppliers: www.sureservo.com/couplingconsiderations.htm

Mechanical transmissions

Common mechanical transmissions include leadscrews, rack \& pinion mechanisms, conveyors, gears, and timing belts. The use of leadscrew, rack \& pinion, or conveyor are common ways to
translate the rotary motion of the servo motor into linear motion of the load. The use of a speed reducer such as a gearbox or timing belt can be very beneficial as follows:

1. Reduction of reflected load inertia

As a general rule, it is beneficial to keep the reflected load inertia as low as possible while using the full range of servo speed. SureServo systems can go up to 5,000 rpm for the low inertia motors and up to $3,000 \mathrm{rpm}$ for the medium inertia motors.
Example: A gearbox reduces the required torque by a factor of the gear ratio, and reduces the reflected load inertia by a factor of the gear ratio squared. A 10:1 gearbox reduces output speed to $1 / 10$, increases output torque 10 times, and decreases reflected inertia to $1 / 100$.
However, when investigating the effect of different speed reduction ratios DO NOT forget to include the added inertia of couplings, gearbox, or timing belt pulleys. These added inertias can be significant, and can negate any inertia reduction due to the speed reduction.

2. Low speed and high torque applications

If the application requires low speed and high torque then it is common to introduce a speed reducer so that the servo system can operate over more of the available speed range. This could also have the added benefit of reducing the servo motor torque requirement which could allow you to use a smaller and lower cost servo system. Additional benefits are also possible with reduction in reflected inertia, increased number of motor encoder counts at the load, and increased ability to reject load disturbances due to mechanical advantage of the speed reducer.

3. Space limitations and motor orientation

SureServo motors can be mounted in any orientation, but the shaft seal should not be immersed in oil (open-frame gearbox, etc.). Reducers can possibly allow the use of a smaller motor or allow the motor to be repositioned. For example, some reducers would allow for in-line, right angle, or parallel mounting of the motor. For more information, refer to the website listed below.

Ordering guide instructions

The following four pages are your ordering guide for the eight standard SureServo systems. Each of the eight standard systems has a torque-speed curve including the motor inertia for reference. This is the fundamental information that you need to select the servo drive and matching motor for your application.

Don't forget the cables and ZIPLink break-out board kit!

Included in the ordering guide are the available connection cables from the drive to motor in standard lengths from 10 to 60 feet. The break-out board kit includes a 0.5 m (19 inch) cable for the CN1 I/O interface, and is listed for your convenience. We highly recommend all five items per system as a minimum. All cables are 100% factory tested to make your system installation as easy and quick as possible. See the Accessories section for regeneration resistors, AC line filters, fuses, contactors, and RF noise filters.

Sure servo $_{\text {AC Servo System Configuration }}$

SureServo series drives and motors part numbering system

Here is what you will need to order a complete servo system:

NOTE: Unit can be programmed via kevpad.

Optional programming software (free download) and optional programming cable available.

NOTE: IF YOU NEED A GEAR BOX FOR YOUR CONFIGURATION, YOU CAN DO IT EASILY ONLINE: HTTP://WWW.SURESERVO.COM/GEARBOX/SELECTOR

SureServo AC servo drive, motor, and cable combinations

Surevervo AC Servo System Configuration
 For all systems:

Order programming software \& programming cable if needed. See pgs. MC-46 \& MC-47.

SVA-2040 \$488.00

1.

Servo Drive
(rpm)
$\mathrm{J}_{\mathrm{m}}=$ Motor Inertia $=\mathbf{0 . 0 0 0 0 2 7 \mathrm { lb } - \mathrm { in } - \mathrm { s } ^ { 2 } (\mathbf { 0 . 0 0 0 0 0 3 } \mathbf { ~ k g } - \mathrm { m } ^ { 2 })}$
100W Low Inertia System

SureServo Motor

Motor Encoder Cable (1)

Motor Power Cable (1)

200W Low Inertia System

$\mathrm{J}_{\mathrm{m}}=$ Motor Inertia $=\mathbf{0 . 0 0 0 1 6} \mathbf{~ l b - i n - \mathrm { S } ^ { 2 }}\left(\mathbf{0 . 0 0 0 0 1 8} \mathbf{~ k g}-\mathrm{m}^{\mathbf{2}}\right)$

SureServo Motor

Motor Encoder Cable (1)

SVC-EFL-010 (10') \$49.50
SVC-EFL-020 (20') $\quad \$ 73.00$
SVC-EFL-030 (30') $\quad \$ 87.00$
SVC-EFL-060 (60^{\prime}) $\$ 113.00$

Motor Power Cable (1)

400W Low Inertia System

SureServo Motor

Motor Encoder Cable (1)

Motor Power Cable (1)

$\mathrm{J}_{\mathrm{m}}=$ Motor Inertia $=\mathbf{0 . 0 0 0 3 \mathrm { Ib } - \mathrm { in } - \mathrm { s } ^ { 2 } (\mathbf { 0 } . 0 0 0 0 3 4 \mathrm { kg } - \mathrm { m } ^ { 2 })}$

Sure servo AC Servo System Configuration
 For all systems:

750W Low Inertia System

Order programming software \& programming cable if needed. See pgs. MC-46 \& MC-47.

Servo Drive SVA-2100 \$632.00
$\mathrm{J}_{\mathrm{m}}=$ Motor Inertia $=.00096 \mathrm{Ib}-\mathrm{in}-\mathrm{s}^{2}\left(\mathbf{0 . 0 0 0 1 0 8 \mathrm { kg } - \mathrm { m } ^ { 2 })}\right.$

$\mathrm{J}_{\mathrm{m}}=$ Motor Inertia $=.0023 \mathrm{lb}-\mathrm{in}-\mathrm{s}^{2}\left(0.00026 \mathrm{~kg}-\mathrm{m}^{2}\right)$
 and Lights

Stacklights

Devices
Process

Sure servo AC Servo System Configuration

For all systems:
Order programming software \&
2 kW Medium Inertia System ${ }^{\text {programming cable if needed. }}$ See pgs. MC-46\& MC-47.

Motor Power Cable (1)

3 kW Medium Inertia System

Servo Drive SVA-2300 \$1,054.00
(rpm)
$\mathrm{J}_{\mathrm{m}}=$ Motor Inertia $=\mathbf{0 . 0 3 8} \mathrm{Ib}-\mathrm{in}-\mathrm{s}^{\mathbf{2}}=\left(\mathbf{0 . 0 0 4 3 3 \mathbf { ~ k g } - \mathrm { m } ^ { 2 })}\right.$

Motor Power Cable (1)

SVC-PHH-010 (10') $\$ 103.00$ SVC-PHH-020 (20') $\$ 133.00$ SVC-PHH-030 (30') \$165.00 SVC-PHH-060 (60') \$265.00

NOTE: All Motor Power Cables include brake
POWER WIRES FOR THE OPTIONAL MOTOR BRAKE.

SureServo Communications Cables for Muti-drop Networks

Product	Prioc	Deschiption
SVC-MDCOM-CBL	$\$ 18.00$	RS-422/485 serial communication cable for use with multidrop networks; 3ft length; IEEE 1394 plug to unterminated wires; compatible with all SureServo systems. Facilitates connection between the SureServo drive serial port and host controllers.
SVC-232RJ12-CBL-2 *	$\$ 7.00$	ZIPLink SureServo Drives cable with 6-pin RJ12 connector to a 6-pin IEEE 1394 connector, shield- ed, twisted pair, 2.0 meter (6.6 ft.) length. For RS-232 connection to all SureServo amplifiers.
SVC-485RJ12-CBL-2 *	$\$ 9.00$	ZIPLink SureServo amplifier communication cable, RJ12 male to 6-pin IEEE 1394 connector, shielded, twisted pair, 2.0 meter (6.6 ft.) length. Cable used in conjunction with ZL-CDM-RJ12xxx distribution module can access a compatible RS-485 device network.
SVC-485HD15-CBL-2 *	$\$ 7.50$	ZIPLink SureServo Drives cable with a HD 15-pin male to a 6-pin IEEE 1394 connector, shielded, twisted pair, 2.0 meter (6.6 ft.) length. For RS-485 connection to all SureServo amplifiers.
* Refer to the ZIPLinks Wiring Solutions section for complete information regarding the ZIPLink cables.		

Sure servo $_{\text {AC Servo System Software }}$

SureServo Pro configuration software

SureServo Pro is an optional free downloadable configuration software package for the SureServo drives. With SureServo Pro installed, the personal computer may be directly connected to the servo drive's serial port via the PC's RS-232 serial port*. A six-foot configuration cable (SVC-PCCFG-CBL, \$18.00) is available to make the connection between the drive serial port and PC DB-9 serial port simple.
*Note: Use our USB-RS232 converter cable in conjunction with the SVC-PCCFG-CBL cable on PCs having only USB ports.

Features

- Quick Start - The basic setup when you have limited time and just want to get up and running ASAP.
- Maintenance keypad allows the user to operate the servo system from the PC. This is a great aid during start-up to allow the servo to perform some basic motion and to check the I/O.
- Detailed - The complete setup for all the drive parameters
- Tune and check the servo response live using the scope feature.
- Upload and download the drive setup. Save the drive setup as a file for future use.
- Edit the drive setup
- View all drive faults
- Trend drive variables in real time

System Requirements

- Windows 7, Windows 2000, XP Pro
- 24 MB of RAM
- 16 MB hard disk
- RS232 serial port or USB port
- Internet Explorer 4.0 or higher (for HTML help support)

Parameter views

The SureServo Pro configuration tool logically organizes over 165 servo drive parameters into five tabbed groups. Each parameter has a factory default that usually allows the servo to run "out-of-the-box".
The parameters can be easily changed with available options or setting ranges displayed. Tuning modes and parameters can also be changed using SureServo Pro. After the parameters have been defined, the complete setup can be stored and archived. Drive configurations can be uploaded, edited, saved, and downloaded as often as necessary.

Parameter View Example Screen - Basic Parameters

SureServo Software and Configuration Cables

Product	Price	
SV-PRO	Free	SureServo Pro configuration software for use with all SureServo servo systems. FREE download from www.sureservo.com or www.automationdirect.com websites.
SV-PRO	$\$ 9.00$	CD with SureServo Pro configuration software
SVC-PCCFG-CBL	$\$ 18.00$	Six-foot RS-232 communications cable; connects servo drive serial port to PC DB-9 serial port. For PCs having only USB ports, use our USB-RS232 converter cable in conjunction with the SVC-PCCFG-CBL cable.
SVC-485CFG-CBL-2 *	$\$ 10.00$	ZIPLink SureServo amplifier configuration cable, 6-pin IEEE 1394 connector to RJ45 connector, shielded, twisted pair, 2.0 meter (6.6 t.) length. Use this cable in conjunction with our USB-485M serial adapter to connect any SureServo amplifier to a PC. Eliminates the need to reprogram net- worked servo drives from RS485 to RS232 when connecting to a PC.
* Refer to the ZIPLinks Wiring Solutions section for complete information regarding ZIPLink cable SVC-485CFG-CBL-2.		

Sure servo AC Servo System Software

SureServo Pro configuration software Parameter views (continued)

Parameter View Example Screen - Monitor Parameters

Parameter View Example Screen - Extended Parameters

Parameter View Example Screen - Communication Parameters

Maintenance screen

A maintenance keypad allows the user to operate the servo system from the PC. This is a great aid during start-up to allow the servo to perform some basic motion and to check the I/O.

Scope

SureServo Pro includes a powerful scope function that allows the user to have as many as three channels of data displayed simultaneously. Each channel has a drop-down table to select the data to be displayed. The scope also has a trigger mode and timebase selection. This function is a valuable tool for tuning SureServo drives.

Sure $\underset{\text { servo }}{\text { AC Servo Drive Specifications }}$

Servo drive overview

LED Display
The LED display has 5 full digits and is used to indicate servo status and alarms

Keypad
Five Function keys:
MODE: Press to select or change mode
NEXT: Press to shift left
UP: \quad Press to increase values
DOWN: Press to decrease values
ENTER: Press to enter value

I/O Interface

50-pin connector for interfacing the host controller (such as DirectLOGIC PLC) and other types of I/O signals.

Use our ZIPLink kit which provides DINrail mounted screw terminals for easy connection.

- Command inputs:

\author{

- Pulse and Direction
 - Encoder Follower
}
- Analog Velocity/Torque
- (8) Digital Inputs
- (5) Digital Outputs
- (2) Analoģ Monitors
- Encoder Output (scalable)

Motor Output Terminal The servo motor power cable is connected to U, V and W . Use our factory made and tested cables available in 10, 20, 30 or 60 foot lengths for easy connection.

Regenerative

Resistor Terminal

1. When the internal regenerative resistor is used, the P and D terminal are connected together while the P and C connection is left open.
2. When an external regenerative resistor is used, it is connected across the P and C

$$
A+, A-, B+B-, Z+Z-
$$

Encoder Interface

20-pin connector for interfacing the servo motor encoder. Use our factory-made and tested cable available in 10, 20, 30 or 60 foot lengths for easy connection.

Serial Communication

Interface
6-pin RS-485/422/232 interface to personal computer with SureServo Pro setup software or host controller with Modbus RTU/ASCII protocol. Use our factory-made cables for easy connection to the PC or the host controller.
terminals while the P and D connection is left open. Use our factory approved resistors for "sure" results.

SureServo systems run "out-of-the-box"... but may be reconfigured for many applications!

The SureServo drives are fully digital and include over 165 programmable parameters. For convenience, the parameters are grouped into five categories:

1) Monitor parameters
2) Basic parameters
3) Extended parameters
4) Communication parameters
5) Diagnostic parameters.

All parameters have commonly used default values which allow you to operate the SureServo system "out-of-the-box". However, the programmability and large variety of parameters make the SureServo systems suitable for a very broad range of applications, including almost all types of general purpose industrial machinery such as assembly, test, packaging, machine tool, and robotics.

Sure servo AC Servo Drive Specifications

Servo drive specifications

Cencral Drive Specifioations	
Permissible Frequency	$50 / 60 \mathrm{~Hz} \pm 5 \%$
Encoder Resolution / Feedback Resolution	2500 lines / 10000 ppr
Control of Main Circuit	SVPWM (Space Vector Pulse Width Modulation) Control
Tuning Modes	Easy / Auto / Manual
Dynamic Brake	Built-in control
Analog Monitor Outputs (2)	Monitor signal can be set by parameters (Output voltage range: $\pm 8 \mathrm{~V}$; Resolution: $12.8 \mathrm{mV} /$ count)
8 Programmable Digital Inputs (45 selectable functions)	Servo enable, Alarm reset, Gain switching, Pulse counter clear, Fault stop, CW/CCW over-travel
	Internal parameter selection, Torque limit activation, Velocity limit activation, Control mode selection
Scalable Encoder Output	Encoder signal output $A, / A, B, / B, Z / Z$, Line Driver
5 Programmable Outputs (9 selectable indicators)	Servo ready, Servo On, Low velocity, Velocity reached, In Position, Torque limiting, Servo fault, Electromagnetic brake control, Home search completed
Communication Interface	RS-232 / RS-485 / RS-422 / Modbus ASCII \& RTU up to 115k Baud
Protective Functions	Overcurrent, Overvoltage, Undervoltage, Overload, Excessive velocity/position error, Encoder error, Regeneration error, Communication error
Installation Site	Indoor location (free from direct sunlight), no corrosive liquid and gas (far away from oil mist, flammable gas, dust)
Altitude	1000 m [3281 tt] above sea level - maximum
Operating Temperature	0 to $55^{\circ} \mathrm{C}$ [32 to $131^{\circ} \mathrm{F}$] (If operating temperature is above $55^{\circ} \mathrm{C}$, forced cooling is required) For long-term reliability, the ambient temperature of SureServo systems should be under $45^{\circ} \mathrm{C}\left(113^{\circ} \mathrm{F}\right)$.
Storage Temperature	-20° to $65^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to 1499 F$)$
Humidity	0 to 90\% (non-condensing)
Vibration	$9.81 \mathrm{~m} / \mathrm{s}^{2}$ (1G) less than $20 \mathrm{~Hz}, 5.88 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{G}) 20$ to 50 Hz
Protection	IP 20
Agency Approvals	CE; UL listed (U.S. and Canada)

Sure servo AC Servo Drive Specifications

Servo drive specifications (continued)

Model and Mode Specific Drive Specifications										
	AC Servo Model		SVA-2040			SVA-2100			SVA-2300	
	Price		\$488.00			\$632.00			\$1,054.00	
	Voltage Phase		Single-phase or Three-phase						Three-phase	
	Voltage and Frequency Range		3-phase: 170~255 VAC @ 50/60 Hz $\pm 5 \%$; 1-phase: 200~255 VAC @ $50 / 60 \mathrm{~Hz} \pm 5 \%$						170~255 VAC @ 50/60 Hz $\pm 5 \%$	
	Main Circuit Input Current	Single Phase	3.4A @ 400W			8.0A@1kW			-	
		Three Phase	2.6A @ 400W			6.2 A @ 1kW			13.6A @ 3kW	
	Main Circuit Inrush Current		44A			77A			87A	
	Main Circuit Power Cycling		Maximum 1 power cycle per minute							
	Control Circuit Current and Voltage		43 mA @ 200~255 VAC, 1 phase							
	Control Circuit Inrush Current		32A maximum							
	Cooling System		Natural Air Circulation			Internal Cooling Fan				
	Drive Heat Loss *	Motor driven *	SVL-201(B)	SVL-202(B)	SVL-204(B)	SVL-207(B)	SVL-210(B)	SVM-210(B)	SVM-220(B)	SVM-230(B)
		Heat Loss	12W	15W	20W	35W	45 W	50W	75 W	80W
	Weight		1.5 kg [3.3 lb]			2 kg [41b]			3kg [71b]	
	Max. Input Pulse Frequency		Max. 500 kpps (Line driver); Max. 200 kpps (Open collector)							
	Pulse Type		Pulse + Direction, A phase + B phase Quadrature, CCW pulse + CW pulse							
	Command Source		External pulse train / Onboard indexer							
	Smoothing Strategy		Low-pass and P-curve filter							
	Electronic Gear		Electronic gear N/M multiple; $\mathrm{N}: 1$ 1~32767, M: 1~32767(1/50<N/M<200)							
	Torque Limit Operation		Set by parameters or by analog input							
	Feed Forward Compensation		Set by parameters							
Velocity Control Mode	Analog Input Command	Voltage Range	Bipolar $\pm 10 \mathrm{VDC}$							
		Input Resistance	$10 \mathrm{k} \Omega$							
		Time Constant	$2.2 \mu \mathrm{~s}$							
		Resolution	(Varies with input voltage) 13 bits @ 0V~1V; 13~10 bits @ 1V~2V; 10 bits @ 2V 10 V							
	Speed Control Range		1:5000							
	Command Source		External analog signal / Onboard indexer							
	Smoothing Strategy		Low-pass and S-curve filter							
	Torque Limit Operation		Set by parameters or via analog input							
	Frequency Response Characteristic		Maximum 450 Hz							
	Speed Accuracy (at rated rotation speed)		0.01% or less at 0 to 100% load fluctuation							
			0.01% or less at $\pm 10 \%$ power fluctuation							
			0.01% or less at 0 to $50^{\circ} \mathrm{C}$ ambient temperature fluctuation							
	Analog Input Command	Voltage Range	Bipolar ± 10 VDC							
		Input Resistance	$10 \mathrm{k} \Omega$							
		Time Constant	2.2 ¢							
		Resolution	10 bits							
	Permissible Time for Overload		8 sec . under 200\% rated output							
	Command Source		External analog signal / Onboard indexer							
	Smoothing Strategy		Low-pass filter							
	Speed Limit Operation		Set by parameters or via analog input							
* Drive heat loss varies depending upon which motor is connected to the drive.										

Sure servo AC Servo Motor Specifications

Servo motor overview
Motor Power and
Brake Connector
1-foot cable with
6-position connector
(Not liquid tight)

Motor Power and Brake Connector

Low and Medium Inertia Motors

Low Inertia Model

- 1 kW 100 mm flange

Medium Inertia Models

- 1 kW 130 mm flange
. 2 kW 180 mm flange
- 3 kW 180 mm flange

Sures servo AC Servo Motor Specifications

Motor Specifications										
Inertia Range		Low					Medium			
Model Name: Sxx-xxx		SVL-201	SVL-202	SVL-204	SVL-207	SVL-210	SVM-210	SVM-220	SVM-230	
Price		\$325.00	\$393.00	\$481.00	\$514.00	\$613.00	\$788.00	\$832.00	\$1,270.00	
Model with brake: Sxx-xxxB		SVL-201B	SVL-202B	SVL-204B	SVL-207B	SVL-210B	SVM-210B	SVM-220B	SVM-230B	
Price		\$525.00	\$581.00	\$678.00	\$734.00	\$919.00	\$1,095.00	\$1,138.00	\$1,57.00	
Rated output power W		100	200	400	750	1000	1000	2000	3000	
Rated torque	N-m	0.32	0.64	1.27	2.39	3.3	4.8	9.4	14.3	
	Ib.in	2.8	5.7	11.2	21.2	29.2	42.5	83.2	126.6	
Maximum torque	N-m	0.95	1.91	3.82	7.16	9.9	15.7	23.5	35.8	
	Ib.in	8.4	16.9	33.8	63.4	87.6	138.9	208.0	316.8	
Rated speed	rpm	3000					2000			
Max. speed	rpm	5000			4500		300			
Rated current	A	1.1	1.7	3.3	5.0	6.8	5.6	13.1	17.4	
Max. current	A	3.0	4.9	9.3	14.1	18.7	17.6	31.4	42.3	
Drive input current	1 phase A	1.0	1.7	3.4	5.9	8.0	8.0	-	-	
	3 phase A	0.8	1.3	2.6	4.7	6.2	6.2	9.1	13.6	
Max. radial shaft load	N	78.4	196		343	490		784		
	Ib	18	44		77	110		176		
Max. thrust shaft load	N	39.2	68.6		98			392		
	$1 b$	9	15		22			88		
Brake	VDC	24								
	ADC	0.21	0.38		0.4	0.75	0.83	1.45	1.67	
	N-m	0.32	1.27		2.55	9.3	7.5	32.0	50.0	
	lb.in	2.83	11.24		22.57	82.3	66.38	283.2	442.5	
Rotor inertia w/o brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.03E-4	0.18E-4	0.34E-4	1.08E-4	2.6E-4	5.98E-4	15.8E-4	43.3E-4	
	Ib.in. s^{2}	$0.27 \mathrm{E}-4$	1.59E-4	3.0E-4	9.56E-4	23.0E-4	52.9E-4	139.8E-4	383.2E-4	
Rotor inertia with brake	$\mathrm{kg} \cdot \mathrm{m}^{2}$	0.06E-4	0.28E-4	0.44E-4	1.32E-4	3.1E-4	8.8E-4	27.8E-4	56.3E-4	
	Ib.in. s^{2}	0.53E-4	2.48E-4	3.9E-4	11.7E-4	27.4E-4	77.9E-4	246.0E-4	498.3E-4	
Mechanical time constant	ms	0.6	0.9	0.7	0.6	1.7	1.4	1.6	0.9	
Static friction torque	N.m	0.02	0.04		0.08	0.49	0.29	0.98		
Torque constant-KT	N-m/A	0.32	0.39	0.4	0.5	0.56	0.91	0.77	0.86	
Voltage constant-KE	V/rpm	33.7E-3	41.0E-3	41.6E-3	52.2E-3	58.4E-3	95.71E-3	81.11-3	90.5E-3	
Armature resistance	Ω	20.3	7.5	3.1	1.3	2.052	1.98	0.6	0.162	
Armature inductance	mH	32	24	11	6.3	8.4	13.2	6.1	2.3	
Electrical time constant m	ms	1.6	3.2	3.2	4.8	4.1	6.7	10.1	14.2	
Motor Type		Brushless, AC, permanent magnet [Neodymium (Na), Iron (FF), Boron (B)]								
Insulation class		Class F								
Insulation resistance		$>100 \mathrm{M} \Omega, 500 \mathrm{VDC}$								
Insulation strength		$1500 \mathrm{VAC}, 50 \mathrm{~Hz}, 60$ seconds								
Ambient temperature range		0 to $40^{\circ} \mathrm{C}$ (32\% $\left.{ }^{\circ} \mathrm{Fo} 1044^{\circ} \mathrm{F}\right)$								
Operating temperature (measured case temperature)		$70^{\circ} \mathrm{C}$ (1589\%)								
Maximum operating temperature(measured case temperature)		$70^{\circ} \mathrm{C}+40^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}$ (230\% ${ }^{\circ} \mathrm{F}$								
Storage temperature		-20 to $65^{\circ} \mathrm{C}\left(-4\right.$ to 149 ${ }^{\circ} \mathrm{F}$)								
Operating humidity		20 to 90\% RH (non-condensing)								
Storage humidity		20 to 90\% RH (non-condensing)								
Vibration / Shock		2.5G/5.0G								
Environmental rating		\|P65 motor body;	P40 shati; P20 connector				IP65 (requires SureServo cables)			
Weight without brake	kg	0.5	0.9	1.3	2.5	4.7	4.8	12.0	17.0	
	$1 b$	1.1	1.98	2.87	5.5	10.36	10.58	26.46	37.48	
Weight with brake	kg	0.7	1.4	1.8	3.4	6.3	7.5	19.0	24.0	
	Ib	1.54	3.09	3.97	7.5	13.89	16.53	41.89	52.9	
Agency Approvals		CE; UL recognized (U.S. and Canada)								
NOTE: U.S. customary units are for reference only.										

Sureservo AC Servo System Wiring

Standard wiring examples

This wiring diagram shows basic Wiring only, and additional wiring configurations are possible for some I/O.
Refer to the "Installation and Wiring" chapter of the User Manual for more detailed wiring information.
Position (Pr \& Pt) Control Modes $\quad \begin{aligned} & \dagger \text { Remove Jumper at } D \\ & \text { if using External Resistor }\end{aligned}$

* Use connection kit part \#s ZL-RTB50 \& ZL-SVC-CBL-50(-x) for CN1 terminal connections.
** Use cable part \# SVC-Exx-0x0 for CN2 terminal connections.
*** Use cable part \# SVC-MDCOM-CBL for CN3 terminal Modbus network connections.

Sure servo AC Servo System Wiring

Standard wiring examples (continued)

This wiring diagram shows basic wiring only, and additional wiring configurations are possible for some i/O.
Refer to the "Installation and Wiring" chapter of the User Manual for more detailed wiring information.

Velocity and Torque Control Modes

\dagger Remove Jumper at D if using External Resistor

* Use connection kit part \#s ZL-RTB50 \& ZL-SVC-CBL-50(-x) for CN1 terminal connections.
** Use cable part \# SVC-Exx-Ox0 for CN2 terminal connections.
*** Use cable part \# SVC-MDCOM-CBL for CN3 terminal Modbus network connections.

Sure $\underset{\text { servo }}{\sim}$ AC Servo System Dimensions

Servo drive dimensions
SVA-2040

UNITS: mm (in)

SVA-2100

Sure~~: AC Servo System Dimensions
 servo

Servo drive dimensions (continued)
SVA-2300
NoTE: RECOMMENDED USER SUPPLIED MOUNTING SCREW IS M6.
TIGHTEN TO $14 \mathrm{KGF} \mathrm{\cdot CM}(1.37 \mathrm{~N} \cdot \mathrm{M})$.

UNITS: mm (in)
(Inch values are for reference only.)

Servo motor dimensions
Low inertia models SVL-201(B), SVL-202(B), SVL-SVL-204(B), SVL-207(B)

SureServo ${ }^{\text {® }}$ Motor Dimensions - 100W-750W Low Inertia				
Dimension	SVL-201(B)	SVL-202(B)	SVL-204(B)	SVL-207(B)
A	40 [1.575]	60 [2.362]		80 [3.15]
B	4.5 [0.1772]	5.5 [0.2165]		6.6 [0.2598]
C	46 [1.811]	70 [2.756]		90 [3.543]
D	$8+0.0 /-0.009$ (8h6)	14 +0.0/-0.011 (14h6)		$19+0.0-0.013$ (19n6)
E	$30+0.0 /-0.021$ (30h7)	$50+0.0 /-0.025$ (50h7)		$70+0.0 /-0.030$ (70h7)
$\begin{gathered} \text { F } \\ \text { (w/o brake) } \end{gathered}$	100.1 [3.941]	102.4 [4.032]	124.4 [4.898]	135 [5.315]
F (with brake)	135.7 [5.343]	137 [5.394]	159 [6.26]	171.6 [6.756]
G	25 [0.98]	30 [1.18]		35 [1.38]
H	5 [0.197]	6 [0.236]		8 [0.315]
I	2.5 [0.098]	3 [0.118]		
Cable length	300 mm (12 inches)			
UNITS: mm [in]. (Inches are for reference only; not included on diameter dimensions for accuracy.)				

Sure servo $_{\text {AC Servo System Dimensions }}$

Servo motor dimensions (continued)

Low inertia models SVL-210(B)

SureServo Motor Dimensions -1000W Low Inertia	
Dimension	SVL-210(B)
A	$100[3.937]$
B	$9[0.3543]$
C	$115+0.2 /-0.2[4.528]$
D	$22+0.0 /-0.013(22 h 6)$
E	$95+0.0 /-0.035(95 h 7)$
F	
(w/o brake)	$158[6.22]$
F	
(with brake)	$190[7.48]$
G	$45[1.77]$
H	$17[0.669]$
I	$7[0.28]$
UNITS: $m m$ diameter dimensions for accuracy.)	

Medium inertia models SVM-210(B), SVM-220(B), SVM-230(B)

SureServo ${ }^{\text {® }}$ Motor Dimensions -1000W-3000W Medium Inertia			
Dimension	SVM-210(B)	SVM-220(B)	SVM-230(B)
A	130 [5.118]	180 [7.087]	
B	9 [0.3543]	13.5 [0.5315]	
C	$145+0.2 /-0.2$ [5.709]	$200+0.2 /-0.2$ [7.874]	
D	$22+0.0 /-0.013$ (22h6)	$35+0.0 /-0.016$ (35h6)	
E	$110+0.0 /-0.035$ (110h7)	$114.3+0 /-0.035$ (114.3h7)	
$\begin{gathered} \text { F } \\ \text { (w/o brake) } \end{gathered}$	143 [5.63]	164 [6.457]	212 [8.35]
$\begin{gathered} \text { F } \\ \text { (with brake) } \end{gathered}$	181 [7.126]	213 [8.386]	258 [10.16]
G	55 [2.17]	75 [2.95]	
H	15 [0.591]	20 [0.787]	
I	4 [0.157]		
UNITS: mm [in] (Inches are for reference only; not included on diameter dimensions for accuracy.)			

Sure servo AC Servo System Accessories

Accessories

External Regeneration Resistors

Use external resistors to provide additional regenerative capacity and to dissipate heat away from the servo drive.

Part Number	Resistance	SureServo Drives	Price
GS-25PO-BR	40Ω	SVA-2040	$\$ 75.00$
GS-2010-BR-ENC	20Ω	SVA-2100, SVA-2300	$\$ 223.00$

AC Line Filters

Input EMI filters reduce electromagnetic interference or noise on the input side of the servo drive. They are required for CE compliance and recommended for installations prone to or sensitive to electromagnetic interference.

SureServo Drives	AC Input Power	EMI Filter Pating	EMI Filter Part Number	Price
SVA-2040	Single-Phase	250V, 1-phase, 20A	20DRT1W3S	\$76.00
	Three-Phase	250V, 3-phase, 10A	10TDT1W4C	881.00
SVA-2100	Single-Phase	250V, 1-phase, 20A	20DRT1W3S	876.00
	Three-Phase	250V, 3 -phase, 10A	10TDT1W4C	58.00
SVA-2300	Three-Phase	250V, 3 -phase, 26A	26TDT1W4C	\$113.00
	Note: These EMI Filters are electrically Compatible with the SureServo drives. however, they are intended to be mounted next to the servo drive. Do not mount the fluter under the drive. The drive mounting holes on these units are intended to be USED only with Automationdirect's line of VFDs.			

Edison Fuses \& Fuji Contactors

SureServo Drives	Input Type	Input Voltage	Edison Fuse - Class CG	Price*	Contactor**	Price
SVA-2040	Main Input Power	230V 3-Phase	HCTR4	\$86.00	SC-E02-xxx	varies
SVA-2100			HCTR7-5	\$98.00	SC-E03-xxx	varies
SVA-2300			HCTR15	\$80.00	SC-E04-xxx	varies
SVA-2040		230V 1-phase	HCTR4	\$86.00	SC-E02-xxx	varies
SVA-2100			HCTR10	\$87.00	SC-E03-xxx	varies
SVA-2040 SVA-2100 SVA-2300	Control Input Power	230 V 1-phase	HCTR2-5	\$89.00		
* Fuses are sold in packages of 10. ** Note: For contactors, xxx = coil voltage (for example, SC-EO2-220VAC).						

Resistor GS-25PO-BR

AC Line Filter 10TD1W4C

The SureGear PGA, PGB and PGD series easily mates to SureServo motors. Everything you need to mount your SureServo motor is included!
It is the perfect solution for applications such as gantries, injection-molding machines, pick-and-place automation, and linear slides.

Quickly and easily configure a system online: http://www.sureservo.com/gearbox/selector

SureGear ${ }^{\text {º }}$

Precision
Gearboxes for Servo motors Sure *gear

IN-LINE

Tough on the outside, precision quality on the inside

81 models, four gear ratios available

Suregear Precision Servo Gearboxes

SureGeare Servo Gearbox Overview

PGA In-line Series

The SureGear PGA series of high-precision servo gear reducers is an excellent choice for applications that require good accuracy and reliability at an exceptional value. This in-line planetary gear reducer has a thread-in mounting style, along with a level of precision and torque capacity that is best in its class. Offered in a concentric shaft design with a maximum seven arc-min backlash rating, the SureGear PGA series is an accurate, high-performance, and cost effective solution for any OEM.
The machining quality of the SureGear PGA helical planetary gears provides a very quiet and more efficient reducer than other competitive products that are similarly priced. The SureGear PGA series easily mates to SureServo motors, and is the perfect solution for applications such as gantries, injection-molding machines, pick-and-place automation, and linear slides.

PGB Right-angle Series

The SureGear PGB series of high-precision right-angle servo gear reducers is an excellent choice for applications that require a more compact footprint.
The PGB right-angle planetary gear reducers offer similar technical specifications to the PGA series in-line gear reducers, and provides the customer with an excellent solution when space and clearance requirements are limited.
Offered with a six arc-min backlash rating for 2 -stage and nine arc-min backlash for 3 -stage, the SureGear PGB series performs to OEMs' demanding expectations.

PGD Hub Style In-line Series

The SureGear PGD series sets a new standard in applications requiring extremely high-torque ratings and rigidity. The compact design and hub-style output is ideal for equipment that requires highspeed, high-precision indexing movement. The remarkable torsion stiffness and the low backlash of the planetary gearing combine to provide outstanding positioning accuracy.
With a backlash rating less than 3 arc-minutes and exceptional torque handling capabilities, the PGD series offers a high performance robust planetary solution for OEM customers. The PGD reducer is often used for larger indexing applications and dial tables commonly found in packaging and filling equipment and assembly automation systems.

Features

- Thread-in mounting style
- Best-in-class backlash
- Four gear ratios available (5:1, 10:1, 15:1, 25:1), Two additional for PGD models ($35: 1$ and $50: 1$)
- Mounting hardware included for attaching to SureServo motors
- Helical-cut planetary gears for quiet operation and reduced vibration
- Right-angle reducer utilizes a spiral bevel gear; motor can be located at a 90° position from the reducer, providing a more compact footprint
- Uncaged needle roller bearings for high rigidity and torque
- Adapter bushing connection for simple and effective attachment to most servo motors
- High-viscosity, anti-separation grease does not migrate away from the gears; no leakage through the seal
- Maintenance free: No need to replace the grease for the life of the unit
- At nominal speed, service life is 20,000 hours
- Can be positioned in any orientation
- IP55 environmental rating
- 5 -year warranty

SureGear PGA Gearbox

SureGear Servo Gearbox Selection

			HCHer	Sc	Pearis	x Sc	ton				
Sure Servo	Gear	SureGear	Frame Size	Motor Outpu	ominal orque	Combo Outpu	Nominal Torque	Nominal Output	Max Output	Available @ 5:1	Inertia natch *
Motor			(mm)	$\mathrm{N} \cdot \mathrm{m}$	lb-in	N•m	lb-in	(rpm	Speed (rpm)	$\mathrm{kg} \cdot \mathrm{cm}^{2}$	$\mathrm{lb} \cdot \mathrm{in} \cdot \mathrm{s}^{2}$
		PGD047-05A1	47							2.68	0.002
	$5 \cdot 1$	PGA050-05A1	50			1.52	13.44	600	1,000	2.85	0.003
	5.1	PGA070-05A1	70					600	1,000	1.83	0.002
		PGB070-05A1	70			1.49	13.16			-2.50**	-0.002**
		PGD047-10A1	47							11.80	0.010
	$10 \cdot 1$	PGA050-10A1	50			3.04	26.89	300	500	12.00	0.011
	10.1	PGA070-10A1	70					300	500	9.40	0.008
SVL-201(B)		PGB070-10A1	70	032	283	2.98	26.32			-8.00**	-0.007**
SV-201(B)		PGA050-15A1	50	0.32	2.83	432	3821			25.88	0.023
	15:1	PGA070-15A1	70			4.32	38.21	200	333	21.38	0.019
		PGB070-15A1	70			4.22	37.36			17.33	0.015
		PGD047-25A1	47							72.50	0.064
	25.1	PGA050-25A1	50			7.20	63.68	120	200	72.50	0.064
	25.1	PGA070-25A1	70					120	200	60.63	0.054
		PGB070-25A1	70			7.04	62.26			49.38	0.044
	50:1	PGD064-50A1	64			14.40	127.35	60	100	252.50	0.223
		PGD064-05A2	64			304	27.08			20.00	0.018
	$5: 1$	PGA070-05A2	70			3.04	27.08	600	1,000	20.58	0.018
		PGB070-05A2	70			2.98	26.51			16.25	0.014
		PGD064-10A2	64			6.8	54.15			83.80	0.074
	10:1	PGA070-10A2	70			6.00	54.15	300	500	84.40	0.075
		PGB070-10A2	70			5.95	53.01			67.00	0.059
		PGA070-15A2	70			8.64	76.95			190.13	0.168
SVI-202(B)	15:1	PGB070-15A2	70	0.64	5.7	8.45	75.24	200	333	186.08	0.165
SV-202(B)		PGB090-15A2	90	0.64	5.7	8.45	75.24			126.00	0.112
		PGD064-25A2	64			14.40	12825			528.75	0.468
		PGA070-25A2	70			14.40	128.25			529.38	0.468
	$25: 1$	PGB070-25A2	70			14.08	125.40	120	200	518.13	0.459
		PGB090-25A2	90			14.08	125.40			362.50	0.321
		PGD090-25A2	90			14.40	128.25			481.25	0.426
	50.1	PGD090-50A2	90			28.80	25650	60	100	2000.00	1.770
	50.1	PGD110-50A2	110			20.0	256.50	60	100	1250.00	1.106
		PGD064-05A2	64			6.03	5320			40.00	0.035
	$5: 1$	PGA070-05A2	70			6.03	53.20	600	1,000	40.58	0.036
		PGB070-05A2	70			5.91	52.08			36.25	0.032
		PGD064-10A2	64			12.07	106.40			163.80	0.145
	10:1	PGA070-10A2	70			12.07	106.40	300	500	164.40	0.145
		PGB070-10A2	70			11.81	104.16			147.00	0.130
		PGA070-15A2	70			17.15	151.20			370.13	0.328
SVI-204(B)	15:1	PGB070-15A2	70	127	112	16.76	14784	200	333	366.08	0.324
SL-204(B)		PGB090-15A2	90	1.27	11.2	16.76	147.84			306.00	0.271
		PGD064-25A2	64			28.58	25200			1028.75	0.910
		PGA070-25A2	70			28.58	252.00			1029.38	0.911
	25:1	PGB070-25A2	70			2794	246.40	120	200	1018.13	0.901
		PGB090-25A2	90			27.94	246.40			862.50	0.763
		PGD090-25A2	90			28.58	252.00			981.25	0.868
	50:1	PGD090-50A2	90			57.15	504.00	60	00	4000.00	3.540
	50.1	PGD110-50A2	110			57.15	504.00	60	0	3250.00	2.876
SVL-207(B)		PGA070-05A3	70	2.39	21.2	11.35	100.70	600	1000	133.08	0.118
	5:1	PGB090-05A3	90			11.11	98.58			90.00	0.080
		PGD090-05A3	90			11.35	100.70			120.50	0.107
		PGA090-10A3	90			22.71	201.40	300	500	511.00	0.452
	10:1	PGB090-10A3	90			22.23	197.16			371.00	0.328
		PGD090-10A3	90			22.71	201.40			507.00	0.449
	15.1	PGA090-15A3	90			32.27	286.20	200	333	1185.75	1.049
	15.1	PGB090-15A3	90			31.55	279.84			1138.50	1.008
	25:1	PGA090-25A3	90			53.78	477.00	120	200	3300.00	2.921
		PGB090-25A3	90			52.58	466.40			3175.00	2.810
		PGD110-25A3	110			53.78	477.00			2937.50	2.600
	50:1	PGD110-50A3	110			107.55	954.00	60	100	12500.00	11.063

[^0]** This gearbox is NOT a suitable choice at a $5: 1$ mismatch. If inertia balancing is a selection criteria for your end use, please use a mismatch of 8:1 to 10:1.

SureGear® Servo Gearbox Selection (continued)

Surchear ${ }^{\text {® Servo Gearbox Sclection }}$												Motors Power Transmission
Sure Servo Motor	Gear Ratio	SureGear Gearbox	Frame Size (mm)	Motor Nominal Output Torque		Combo Nominal Output Torque		Nominal Output Speed (rpm)	Max Output Speed (rpm)	Available Load Inertia @ 5:1 Mismatch *		
				$\mathrm{N} \cdot \mathrm{m}$	lb -in	N•m	lb-in			$\mathrm{kg} \cdot \mathrm{cm}^{2}$	$\mathrm{lb} \cdot \mathrm{in} \cdot \mathrm{s}^{\mathbf{2}}$	Motion: Servos and Steppers
SVL-210(B)	5:1	PGA090-05A4	90	3.3	29.2	15.68	138.70	600	1000	315.00	0.279	Motor Controls
		PGB090-05A4	90			15.35	135.78			280.00	0.248	
		PGD090-05A4	90			15.68	138.70			313.00	0.277	
	10:1	PGA090-10A4	90			31.45	277.40	300	500	1271.00	1.125	Sensors: Proximity Sensors: Photoelectric Sensors:
		PGB090-10A4	90			30.69	271.56			1131.00	1.001	
		PGD090-10A4	90			31.35	277.40			1267.00	1.121	
	15:1	PGA120-15A4	120			44.55	394.20	200	333	2828.25	2.503	
		PGB120-15A4	120			43.56	385.44			2418.75	2.141	
	25:1	PGD110-25A4	110			74.25	657.00	120	200	7687.50	6.803	Sensors: Encoders Sensors: Limit Switches
		PGA120-25A4	120							7887.50	6.980	
		PGB120-25A4	120			72.60	642.40			6762.50	5.985	
	50:1	PGD110-50A4	110			148.50	1314.00	60	100	31500.00	27.878	
SVM-210(B)	5:1	PGA090-05A5	90	4.8	42.5	22.80	201.88	600	1000	737.50	0.653	Sensors: Current
		PGD090-05A5	90							735.50	0.651	
		PGB120-05A5	120			22.32	197.63			622.00	0.550	Sensors: Pressure
	10:1	PGA090-10A5	90			45.60	403.75	300	500	2961.00	2.620	
		PGD110-10A5	110							2957.00	2.617	Sensors: Temperature
		PGB120-10A5	120			44.64	395.25			2544.00	2.251	
	15:1	PGA120-15A5	120			64.80	573.75	200	333	6630.75	58.68	Sensors: Level
		PGB120-15A5	120			63.36	561.00			6221.25	5.506	
	25:1	PGD110-25A5	110			108.00	956.25	120	200	18250.00	16.151	Sensors: Flow
		PGA120-25A5	120							18450.00	16.328	
		PGB120-25A5	120			105.60	935.00			17325.00	15.333	
	35:1	PGD110-35A5	110			151.20	1338.75	86	143	35770.00	31.656	Pushbuttons and Lights
SVM-220(B)	5:1	PGD110-05A6	110	9.4	83.2	44.65	395.20	600	1000	5355.00	4.739	
		PGA120-05A6	120							5372.50	4.755	Stacklights Signal Devices
		PGB120-05A6	120			43.71	386.88			5287.00	4.679	
		PGB155-05A6	155							4989.75	4.416	
	10:1	PGD110-10A6	110			89.30	790.40	300	500	21540.00	19.063	Process Relays and Timers
		PGA120-10A6	120							21555.00	19.076	
		PGB120-10A6	120			87.42	773.76			21204.00	18.766	
		PGB155-10A6	155							20184.00	17.863	
	15:1	PGA155-15A6	155			126.90	1123.20	200	333	48420.00	42.852	Pneumatics: Air Prep
		PGB155-15A6	155			124.08	1098.24			47272.50	41.836	
	25:1	PGA155-25A6	155			211.50	1872.00	120	200	134625.00	119.143	
		PGB155-25A6	155			206.80	1830.40			131468.75	116.350	Pneumatics: Directional Control Valves
SVM-230(B)	5:1	PGD110-05A6	110	14.3	12.6	67.93	601.35	600	1000	5355.00	4.739	
		PGA120-05A6	120							5372.50	4.755	Pneumatics: Cylinders
		PGB120-05A6	120			66.50	588.69			5287.00	4.679	
	10:1	PGD110-10A6	110			135.85	1202.70	300	500	21540.00	19.063	Pneumatics: Tubing
		PGA120-10A6	120							21555.00	19.076	
		PGB120-10A6	120			132.99	1177.38			21204.00	18.766	
		PGB155-10A6	155							20184.00	17.863	Pneumatics: Air Fittings
	15:1	PGA155-15A6	155			193.05	1709.10	200	333	48420.00	42.852	
		PGB155-15A6	155			188.76	1671.12			47272.50	41.836	Appendix Book 2
	25:1	PGA155-25A6	155			321.75	2848.50	120	200	134625.00	119.143	
		PGB155-25A6	155			314.60	2785.20			131468.75	116.350	
A 5:1 inertia mismatch is a good target for design purposes. Systems with lower or higher mismatch may be possible, depending on operating conditions.												Conditions

Pricing \& Specifications - In-Line Shaft PGA Series

Suregear Precision Servo Gearboxes

Dimensions - In-Line Shaft PGA Series

SureGear PGA Series In-Line Shaft Gearboxes Dimension Drawing

SureGear ${ }^{\text {® }}$ Precision Servo Gearhox Dimensions - In-Line Shaft PCA Series (dimensions = mm [in])																
Part Number	A	B	C	E	G	H	J	K	L	M	N	P	0	R	S	T
$\begin{array}{\|l} \hline \text { PGA050-05A1 } \\ \text { PGA050-10A1 } \end{array}$	$\begin{gathered} 88.5 \\ {[3.48]} \end{gathered}$	$\begin{array}{\|c\|} \hline 42.0 \\ {[1.65]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 24.5 \\ {[0.96]} \end{array}$	$\begin{array}{\|c\|} \hline 4.0 \\ {[0.16]} \end{array}$	$\begin{aligned} & \varnothing 50.0 \\ & {[\varnothing 1.97]} \end{aligned}$	$\begin{aligned} & \varnothing 35.0 \\ & {[\varnothing 1.38]} \end{aligned}$	$\begin{aligned} & \varnothing 12.0 \\ & {[\varnothing 0.47]} \end{aligned}$	$\begin{gathered} \varnothing 46.0 \\ {[\varnothing 1.81]} \end{gathered}$	$\begin{aligned} & \varnothing 30.0 \\ & {[\varnothing 1.18]} \end{aligned}$	$\begin{array}{\|c\|} \hline 5.0 \\ {[0.20]} \\ \hline \end{array}$	$\begin{gathered} 08.0 \\ {[\varnothing 0.31]} \end{gathered}$	$\begin{gathered} \text { M4- } \\ 0.7 \times 9 \end{gathered}$	$\begin{gathered} 944.0 \\ {[\varnothing 0.731]} \end{gathered}$	$\begin{gathered} \text { M4- } \\ 0.7 \times 8 \end{gathered}$	$\begin{gathered} \hline 4.0 \\ {[0.16]} \end{gathered}$	$\begin{gathered} 4.0 \\ {[0.16]} \end{gathered}$
$\begin{aligned} & \text { PGA050-15A1 } \\ & \text { PGA050-25A1 } \end{aligned}$	$\begin{aligned} & 105.0 \\ & {[4.13]} \end{aligned}$	$\begin{gathered} 42.0 \\ {[1.65]} \end{gathered}$	$\begin{array}{\|c\|} \hline 24.5 \\ {[0.96]} \\ \hline \end{array}$	$\begin{gathered} \hline 4.0 \\ {[0.16]} \\ \hline \end{gathered}$	$\begin{gathered} \not 050.0 \\ {[01.97]} \end{gathered}$	$\begin{gathered} \emptyset 35.0 \\ {[\varnothing 1.38]} \end{gathered}$	$\begin{gathered} \emptyset 12.0 \\ {[\varnothing 0.47]} \end{gathered}$	$\begin{aligned} & 846.0 \\ & {[\varnothing 1.81]} \end{aligned}$	$\begin{gathered} \emptyset 30.0 \\ {[01.18]} \end{gathered}$	$\left[\begin{array}{c} 5.0 \\ {[0.20]} \end{array}\right.$	$\begin{gathered} 08.0 \\ {[80.31]} \end{gathered}$	$\begin{gathered} \text { M4- } \\ 0.7 \times 9 \end{gathered}$	$\begin{gathered} 044.0 \\ {[\varnothing 0.731]} \end{gathered}$	$\begin{aligned} & \text { M4- } \\ & 0.7 \times 8 \end{aligned}$	$\begin{gathered} 4.0 \\ {[0.16]} \\ \hline \end{gathered}$	$\begin{gathered} 4.0 \\ {[0.16]} \end{gathered}$
$\begin{aligned} & \text { PGA070-05A1 } \\ & \text { PGA070-10A1 } \end{aligned}$	$\begin{aligned} & 112.0 \\ & {[4.41]} \end{aligned}$	$\begin{array}{\|c} 52.0 \\ {[2.05]} \end{array}$	$\begin{gathered} 36.0 \\ {[1.42]} \end{gathered}$	$\begin{array}{\|c\|} \hline 5.0 \\ {[0.20]} \\ \hline \end{array}$	$\begin{gathered} \emptyset 70.0 \\ {[\varnothing 2.76]} \end{gathered}$	$\begin{gathered} \emptyset 52.0 \\ {[\emptyset 2.05]} \end{gathered}$	$\varnothing 16.0$ $[\varnothing 0.63]$	$\begin{gathered} 846.0 \\ {[\varnothing 1.81]} \end{gathered}$	$\begin{gathered} \emptyset 30.0 \\ {[\boxed{1.18]}} \end{gathered}$	$\begin{array}{\|c\|} 5.0 \\ {[0.20]} \\ \hline \end{array}$	$\begin{gathered} 08.0 \\ {[80.31]} \end{gathered}$	$\begin{gathered} \text { M4- } \\ 0.7 \times 9 \\ \hline \end{gathered}$	$\begin{gathered} \emptyset 62.0 \\ {[\emptyset 2.44]} \end{gathered}$	$\begin{array}{r} \text { M5- } \\ 0.8 \times 10 \end{array}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$
$\begin{aligned} & \text { PGAO70-05A2 } \\ & \text { PGAO70-10A2 } \end{aligned}$	$\begin{aligned} & 115.0 \\ & {[4.53]} \end{aligned}$	$\begin{array}{\|c} 65.0 \\ {[2.56]} \end{array}$	$\begin{array}{\|c\|} \hline 36.0 \\ {[1.42]} \end{array}$	$\begin{array}{\|c\|} \hline 5.0 \\ {[0.20]} \end{array}$	$\begin{gathered} \emptyset 70.0 \\ {[\emptyset 2.76]} \end{gathered}$	$\begin{aligned} & \varnothing 552.0 \\ & {[\emptyset 2.05]} \end{aligned}$	$\begin{gathered} \varnothing 16.0 \\ {[00.63]} \end{gathered}$	$\begin{gathered} \varnothing 70.0 \\ {[\varnothing 2.76]} \end{gathered}$	$\begin{aligned} & \varnothing 50.0 \\ & {[\varnothing 1.97]} \end{aligned}$	$\begin{array}{\|c} 5.0 \\ {[0.20]} \end{array}$	$\begin{gathered} \varnothing 14.0 \\ {[\varnothing 0.55]} \end{gathered}$	$\begin{aligned} & \text { M5- } \\ & 0.8 \times 11 \end{aligned}$	$\begin{gathered} \emptyset 62.0 \\ {[\emptyset 2.44]} \end{gathered}$	$\begin{array}{c\|} \hline \text { M5- } \\ 0.8 \times 10 \end{array}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$
PG	$\begin{aligned} & 130.0 \\ & {[5.12]} \end{aligned}$	$\begin{gathered} 80.0 \\ {[3.15]} \end{gathered}$	$\begin{gathered} 36.0 \\ {[1.42]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\begin{gathered} \emptyset 70.0 \\ {[\varnothing 2.76]} \end{gathered}$	$\begin{gathered} \emptyset 52.0 \\ {[\varnothing 2.05]} \end{gathered}$	$\begin{aligned} & \varnothing 16.0 \\ & {[00.63]} \end{aligned}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \varnothing 70.0 \\ {[\varnothing 2.76]} \end{gathered}$	$\left\lvert\, \begin{gathered} 6.0 \\ {[0.24]} \end{gathered}\right.$	$\begin{gathered} 819.0 \\ {[80.75]} \end{gathered}$	$\begin{array}{c\|} \hline \text { M6- } \\ 1.0 \times 13 \end{array}$	$\begin{gathered} \emptyset 62.0 \\ {[\emptyset 2.44]} \end{gathered}$	$\begin{gathered} \text { M5- } \\ 08 \times 10 \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$
$\begin{aligned} & \text { PGA070-15A1 } \\ & \text { PGA070-25A1 } \end{aligned}$	$\begin{aligned} & 131.0 \\ & {[5.16]} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 52.0 \\ {[2.05]} \end{array}$	$\begin{gathered} 36.0 \\ {[1.42]} \end{gathered}$	$\begin{array}{\|c\|} \hline 5.0 \\ {[0.20]} \\ \hline \end{array}$	$\begin{gathered} \emptyset 70.0 \\ {[\emptyset 2.76]} \end{gathered}$	$\begin{gathered} \emptyset 52.0 \\ {[\emptyset 2.05]} \end{gathered}$	$\begin{gathered} \varnothing 16.0 \\ {[00.63]} \end{gathered}$	$\begin{aligned} & 846.0 \\ & {[\varnothing 1.81]} \end{aligned}$	$\begin{gathered} \emptyset 30.0 \\ {[\varnothing 1.18]} \end{gathered}$	$\begin{array}{\|c\|} 5.0 \\ {[0.20]} \\ \hline \end{array}$	$\begin{gathered} 08.0 \\ {[80.31]} \end{gathered}$	$\begin{gathered} \text { M4- } \\ 0.7 \times 9 \end{gathered}$	$\begin{gathered} \emptyset 62.0 \\ {[\emptyset 2.44]} \end{gathered}$	$\begin{gathered} \text { M5- } \\ 0.8 \times 10 \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$
$\begin{aligned} & \text { PGA070-15A2 } \\ & \text { PGAO70-25A2 } \end{aligned}$	$\begin{aligned} & 136.0 \\ & {[5.35]} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 65.0 \\ {[2.56]} \\ \hline \end{array}$	$\begin{array}{\|c} 36.0 \\ {[1.42]} \\ \hline \end{array}$	$\begin{gathered} 5.0 \\ {[0.20]} \\ \hline \end{gathered}$	$\begin{gathered} \emptyset 70.0 \\ {[\emptyset 2.76]} \end{gathered}$	$\begin{gathered} \emptyset 52.0 \\ {[\emptyset 2.05]} \end{gathered}$	$\begin{gathered} \varnothing 16.0 \\ {[00.63]} \end{gathered}$	$\begin{gathered} \emptyset 70.0 \\ {[\varnothing 2.76]} \end{gathered}$	$\begin{gathered} \varnothing 50.0 \\ {[\varnothing 1.97]} \end{gathered}$	$\left[\begin{array}{c} 5.0 \\ {[0.20]} \end{array}\right.$	$\begin{gathered} \varnothing 14.0 \\ {[\varnothing 0.55]} \end{gathered}$	$\begin{gathered} \text { M5- } \\ 0.8 \times 11 \end{gathered}$	$\begin{gathered} \emptyset 62.0 \\ {[\emptyset 2.44]} \end{gathered}$	$\begin{gathered} \text { M5- } \\ 0.8 \times 10 \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$
PGA090-10A3	$\begin{aligned} & 153.0 \\ & {[6.02]} \end{aligned}$	$\begin{array}{\|c} 80.0 \\ {[3.15]} \end{array}$	$\begin{gathered} 46.0 \\ {[1.81]} \end{gathered}$	$\begin{array}{\|c} 7.0 \\ {[0.28]} \\ \hline \end{array}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \emptyset 68.0 \\ {[\varnothing 2.68]} \end{gathered}$	$\begin{gathered} \emptyset 22.0 \\ {[\varnothing 0.87]} \end{gathered}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \varnothing 70.0 \\ {[\varnothing 2.76]} \end{gathered}$	$\left\lvert\, \begin{gathered} 6.0 \\ {[0.24]} \end{gathered}\right.$	$\begin{gathered} 819.0 \\ {[80.75]} \end{gathered}$	$\begin{array}{c\|} \hline \text { M6- } \\ 1.0 \times 13 \end{array}$	$\begin{gathered} \emptyset 80.0 \\ {[83.15]} \end{gathered}$	$\begin{aligned} & \text { M6- } \\ & 1.0 \times 12 \end{aligned}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$
$\begin{array}{\|l} \text { PGAO90-05A4 } \\ \text { PGA090-10A4 } \end{array}$	$\begin{aligned} & 170.0 \\ & {[6.69]} \end{aligned}$	$\begin{aligned} & 100.0 \\ & {[3.94]} \end{aligned}$	$\begin{array}{\|c} 46.0 \\ {[1.81]} \\ \hline \end{array}$	$\begin{array}{\|c} 7.0 \\ {[0.28]} \end{array}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \emptyset 68.0 \\ {[\emptyset 2.68]} \end{gathered}$	$\begin{gathered} \varnothing 22.0 \\ {[\varnothing 0.87]} \end{gathered}$	$\begin{aligned} & \emptyset 115.0 \\ & {[\varnothing 4.53]} \end{aligned}$	$\begin{aligned} & \quad 095.0 \\ & {[\varnothing 3.74]} \end{aligned}$	$\left[\begin{array}{c} 8.0 \\ {[0.31]} \end{array}\right.$	$\begin{aligned} & \varnothing 22.0^{*} \\ & {[\varnothing 0.87]} \end{aligned}$	$\begin{gathered} \text { M8- } \\ 1.25 \times 17 \end{gathered}$	$\begin{gathered} \varnothing 80.0 \\ {[\varnothing 3.15]} \end{gathered}$	$\begin{gathered} \text { M6- } \\ 1.0 \times 12 \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$
$\begin{aligned} & \text { PGA090-05A5 } \\ & \text { PGA090-10A5 } \end{aligned}$	$\begin{aligned} & 165.0 \\ & {[6.50]} \end{aligned}$	$\begin{array}{\|l\|l} 130.0 \\ {[5.12]} \end{array}$	$\begin{gathered} 46.0 \\ {[1.81]} \end{gathered}$	$\begin{array}{\|c} 7.0 \\ {[0.28]} \end{array}$	$\begin{aligned} & \varnothing 90.0 \\ & {[\varnothing 3.54]} \end{aligned}$	$\begin{aligned} & \varnothing 68.0 \\ & {[\varnothing 2.68]} \end{aligned}$	$\begin{aligned} & \not 022.0 \\ & {[00.87]} \end{aligned}$	$\begin{aligned} & \emptyset 145.0 \\ & {[\varnothing 5.71]} \end{aligned}$	$\begin{aligned} & \varnothing 110.0 \\ & {[\varnothing 4.33]} \end{aligned}$	$\left\lvert\, \begin{gathered} 8.0 \\ {[0.31]} \end{gathered}\right.$	$\begin{aligned} & \varnothing 22.0^{*} \\ & {[\varnothing 0.87]} \end{aligned}$	$\begin{gathered} \text { M8- } \\ 1.25 \times 17 \end{gathered}$	$\begin{gathered} 980.0 \\ {[\varnothing 3.15]} \end{gathered}$	$\begin{gathered} \text { M6- } \\ 1.0 \times 12 \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$
$\begin{aligned} & \text { PGA090-15A3 } \\ & \text { PGA090-25A3 } \end{aligned}$	$\begin{aligned} & 175.0 \\ & {[6.89]} \end{aligned}$	$\left[\begin{array}{c} 80.0 \\ {[3.15]} \end{array}\right.$	$\begin{array}{\|c\|c} 46.0 \\ {[1.81]} \end{array}$	$\begin{array}{\|c} 7.0 \\ {[0.28]} \\ \hline \end{array}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \emptyset 68.0 \\ {[\varnothing 2.68]} \end{gathered}$	$\begin{aligned} & \emptyset 22.0 \\ & {[\varnothing 0.87]} \end{aligned}$	$\begin{gathered} 890.0 \\ {[83.54]} \end{gathered}$	$\begin{gathered} \varnothing 70.0 \\ {[\varnothing 2.76]} \end{gathered}$	$\left\lvert\, \begin{gathered} 6.0 \\ {[0.24]} \end{gathered}\right.$	$\begin{aligned} & 809.0 \\ & {[80.75]} \end{aligned}$	$\begin{gathered} \text { M6- } \\ 1.0 \times 13 \end{gathered}$	$\begin{gathered} \varnothing 80.0 \\ {[\varnothing 3.15]} \end{gathered}$	$\begin{gathered} \text { M6- } \\ 1.0 \times 12 \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$
$\begin{aligned} & \text { PGA120-05A6 } \\ & \text { PGA120-10A6 } \end{aligned}$	$\begin{aligned} & 225.0 \\ & {[8.86]} \end{aligned}$	$\begin{aligned} & 180.0 \\ & {[7.09]} \end{aligned}$	$\begin{array}{\|c} 70.0 \\ {[2.76]} \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ {[0.35]} \end{gathered}$	$\begin{aligned} & \varnothing 120.0 \\ & {[\varnothing 4.72]} \end{aligned}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \varnothing 32.0 \\ {[\varnothing 1.26]} \end{gathered}$	$\begin{aligned} & \varnothing 200.0 \\ & {[\varnothing 7.87]} \end{aligned}$	$\begin{aligned} & \varnothing 114.0 \\ & {[\varnothing 4.49]} \end{aligned}$	$\left[\begin{array}{c} 8.0 \\ {[0.31]} \end{array}\right.$	$\begin{aligned} & \varnothing 35.0^{*} \\ & {[01.38]} \end{aligned}$	$\begin{gathered} \text { M12- } \\ 1.75 \times 25 \end{gathered}$	$\begin{aligned} & \varnothing 108.0 \\ & {[\varnothing 4.25]} \end{aligned}$	$\begin{gathered} \text { M8- } \\ 1.25 \times 16 \end{gathered}$	$\begin{gathered} 10.0 \\ {[0.39]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[0.31]} \end{gathered}$
$\begin{aligned} & \text { PGA120-15A4 } \\ & \text { PGA120-25A4 } \end{aligned}$	$\begin{aligned} & 231.5 \\ & {[9.11]} \end{aligned}$	$\begin{aligned} & 100.0 \\ & {[3.94]} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 70.0 \\ {[2.76]} \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ {[0.35]} \end{gathered}$	$\begin{aligned} & \varnothing 120.0 \\ & {[\varnothing 4.72]} \end{aligned}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \varnothing 32.0 \\ {[\varnothing 1.26]} \end{gathered}$	$\begin{aligned} & \varnothing 115.0 \\ & {[84.53]} \\ & \hline \end{aligned}$	$\begin{gathered} \emptyset 95.0 \\ {[\varnothing 3.74]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[0.31]} \end{gathered}$	$\begin{aligned} & \varnothing 22.0^{*} \\ & {[\varnothing 0.87]} \end{aligned}$	$\begin{gathered} \text { M8- } \\ 1.25 \times 17 \end{gathered}$	$\begin{aligned} & 8108.0 \\ & {[84.25]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { M8- } \\ 1.25 \times 16 \end{gathered}$	$\begin{gathered} 10.0 \\ {[0.39]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[0.31]} \end{gathered}$
$\begin{aligned} & \text { PGA120-15A5 } \\ & \text { PGA120-25A5 } \end{aligned}$	$\begin{aligned} & 231.5 \\ & {[9.11]} \end{aligned}$	$\begin{aligned} & 130.0 \\ & {[5.12]} \\ & \hline \end{aligned}$	$\begin{array}{\|c} 70.0 \\ {[2.76]} \\ \hline \end{array}$	$\begin{gathered} 9.0 \\ {[0.35]} \\ \hline \end{gathered}$	$\begin{aligned} & \varnothing 120.0 \\ & {[\varnothing 4.72]} \end{aligned}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \varnothing 32.0 \\ {[\varnothing 1.26]} \\ \hline \end{gathered}$	$\begin{aligned} & \varnothing 145.0 \\ & {[\varnothing 5.71]} \\ & \hline \end{aligned}$	$\begin{aligned} & \emptyset 110.0 \\ & {[\varnothing 4.33]} \\ & \hline \end{aligned}$	$\begin{gathered} 8.0 \\ {[0.31]} \end{gathered}$	$\begin{aligned} & \varnothing 22.0^{*} \\ & {[00.87]} \end{aligned}$	$\begin{array}{\|c\|} \text { M8- } \\ 1.25 \times 17 \end{array}$	$\begin{aligned} & \varnothing 108.0 \\ & {[\varnothing 4.25]} \\ & \hline \end{aligned}$	$\begin{gathered} \text { M8- } \\ 1.25 \times 16 \end{gathered}$	$\begin{gathered} 10.0 \\ {[0.39]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[0.31]} \\ \hline \end{gathered}$
PGA155-10A6	$\begin{gathered} 264.0 \\ {[10.39]} \end{gathered}$	$\begin{array}{\|l\|l} \hline 180.0 \\ {[7.09]} \end{array}$	$\begin{gathered} 97.0 \\ {[3.82]} \end{gathered}$	$\begin{gathered} 12.0 \\ {[0.47]} \end{gathered}$	$\begin{aligned} & \emptyset 155.0 \\ & {[\varnothing 6.10]} \end{aligned}$	$\begin{aligned} & 0120.0 \\ & {[\varnothing 44.72]} \end{aligned}$	$\begin{gathered} \emptyset 40.0 \\ {[\varnothing 1.57]} \end{gathered}$	$\begin{aligned} & \varnothing 200.0 \\ & {[\varnothing 7.87]} \end{aligned}$	$\begin{aligned} & 0114.0 \\ & {[\varnothing 4.49]} \end{aligned}$	$\begin{gathered} 8.0 \\ {[0.31]} \end{gathered}$	$\begin{aligned} & \varnothing 35.0^{*} \\ & {[01.38]} \end{aligned}$	$\begin{gathered} \mathrm{M} 12- \\ 1.75 \times 25 \end{gathered}$	$\begin{aligned} & \varnothing 140.0 \\ & {[\varnothing 5.51]} \end{aligned}$	$\begin{gathered} \text { M10- } \\ 1.50 \times 28 \end{gathered}$	$\begin{gathered} 12.0 \\ {[0.47]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[0.31]} \end{gathered}$
$\begin{aligned} & \text { PGA155-15A6 } \\ & \text { PGA155-25A6 } \end{aligned}$	$\begin{gathered} 298.5 \\ {[11.75]} \end{gathered}$	$\begin{array}{\|l\|l} \hline 180.0 \\ {[7.09]} \end{array}$	$\begin{array}{\|c\|} \hline 97.0 \\ {[3.82]} \end{array}$	$\begin{array}{\|c} 12.0 \\ {[0.47]} \end{array}$	$\begin{aligned} & \varnothing 155.0 \\ & {[\varnothing 6.10]} \end{aligned}$	$\begin{aligned} & \varnothing 1220.0 \\ & {[\varnothing 4.72]} \end{aligned}$	$\begin{gathered} \emptyset 40.0 \\ {[\varnothing 1.57]} \end{gathered}$	$\begin{aligned} & \emptyset 200.0 \\ & {[\not 07.87]} \end{aligned}$	$\begin{aligned} & \emptyset 114.0 \\ & {[\varnothing 4.49]} \end{aligned}$	$\left[\begin{array}{c} 8.0 \\ {[0.31]} \end{array}\right.$	$\begin{aligned} & \varnothing 35.0^{*} \\ & {[\varnothing 1.38]} \end{aligned}$	$\begin{gathered} \mathrm{M} 12- \\ 1.75 \times 25 \end{gathered}$	$\begin{aligned} & \varnothing 140.0 \\ & {[\varnothing 5.51]} \end{aligned}$	$\begin{gathered} \mathrm{M} 10- \\ 1.50 \times 28 \end{gathered}$	$\begin{gathered} 12.0 \\ {[0.47]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[0.31]} \end{gathered}$
* Dimension with supplied bushing																
NOTE: See our website: www.AutomationDirect.com for complete engineering drawings.																

Suregear Precision Servo Gearboxes

Pricing \& Specifications - Right-Angle Shaft PGB Series

Suregear Precision Servo Gearboxes

Dimensions - Right-Angle Shaft PGB Series

SureGear PGB Series Right-Angle Shaft Gearboxes Dimension Drawing

Surctear ${ }^{(8)}$ Precision Servo Gearhox Dimensions - Right-Angle Shaft PGA Series (dimensions = mm [in])																
Part Number	A	B	C	E	G	H	J	K	L	M	N	P	0	R	S	T
$\begin{aligned} & \text { PGB070-05A1 } \\ & \text { PGBO70-10A1 } \end{aligned}$	$\begin{aligned} & 151.5 \\ & {[5.96]} \end{aligned}$	$\begin{aligned} & 52.0 \\ & {[2.05]} \end{aligned}$	$\begin{gathered} 36.0 \\ {[1.42]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\begin{gathered} \varnothing 70.0 \\ {[\emptyset 2.76]} \end{gathered}$	$\begin{gathered} \emptyset 52.0 \\ {[\emptyset 2.05]} \end{gathered}$	$\begin{gathered} \varnothing 16.0 \\ {[\varnothing 0.63]} \end{gathered}$	$\begin{gathered} \emptyset 46.0 \\ {[\varnothing 1.81]} \end{gathered}$	$\begin{gathered} \varnothing 30.0 \\ {[\varnothing 1.18]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\left[\begin{array}{c} \emptyset 8.0 \\ {[\varnothing 0.31]} \end{array}\right.$	$\begin{aligned} & \text { M4- } \\ & 0.7 \times 9 \end{aligned}$	$\begin{gathered} \emptyset 62.0 \\ {[\emptyset 2.44]} \end{gathered}$	$\begin{gathered} \text { M5- } \\ 0.8 \times 10 \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$	$\begin{gathered} 5.0 \\ {[0.20]} \end{gathered}$
$\begin{aligned} & \text { PGB070-05A2 } \\ & \text { PGBO70-10A2 } \end{aligned}$		$\begin{aligned} & 65.0 \\ & {[2.56]} \end{aligned}$						$\begin{gathered} \emptyset 70.0 \\ {[\varnothing 2.76]} \end{gathered}$	$\begin{gathered} \quad \varnothing 50.0 \\ {[\varnothing 1.97]} \end{gathered}$		$\begin{gathered} \varnothing 14.0 \\ {[00.55]} \end{gathered}$	$\begin{gathered} \text { M5- } \\ 0.8 \times 11 \end{gathered}$				
$\begin{aligned} & \text { PGB070-15A1 } \\ & \text { PGB070-25A1 } \end{aligned}$	[65.0.0]	$\begin{gathered} \hline 52.0 \\ {[2.05]} \\ \hline \end{gathered}$						$\begin{gathered} \emptyset 46.0 \\ {[\varnothing 1.81]} \end{gathered}$	$\begin{gathered} \varnothing 30.0 \\ {[\varnothing 1.18]} \end{gathered}$		$\begin{gathered} \emptyset 8.0 \\ {[00.31]} \end{gathered}$	$\begin{gathered} \text { M4- } \\ 0.7 \times 9 \end{gathered}$				
$\begin{aligned} & \text { PGBO70-15A2 } \\ & \text { PGBO70-25A2 } \end{aligned}$	$\begin{aligned} & 163.5 \\ & {[6.44]} \end{aligned}$	$\begin{gathered} 65.0 \\ {[2.56]} \end{gathered}$						$\begin{gathered} \varnothing 70.0 \\ {[\emptyset 2.76]} \end{gathered}$	$\begin{gathered} \not 050.0 \\ {[\varnothing 1.97]} \end{gathered}$		$\begin{gathered} \varnothing 14.0 \\ {[\varnothing 0.55]} \end{gathered}$	$\begin{gathered} \text { M5- } \\ 0.8 \times 11 \end{gathered}$				
$\begin{aligned} & \text { PGB090-15A2 } \\ & \text { PGB090-25A2 } \end{aligned}$	$\begin{aligned} & 204.5 \\ & {[8.05]} \end{aligned}$		$\begin{aligned} & 46.0 \\ & {[1.81]} \end{aligned}$	$\begin{gathered} 7.0 \\ {[0.28]} \end{gathered}$	$\begin{gathered} \varnothing 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \emptyset 68.0 \\ {[\emptyset 2.68]} \end{gathered}$	$\begin{gathered} \emptyset 22.0 \\ {[\varnothing 0.87]} \end{gathered}$						$\begin{gathered} 680.0 \\ {[\varnothing 3.15]} \end{gathered}$	$\begin{gathered} \text { M6- } \\ 1.0 \times 12 \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$	$\begin{gathered} 6.0 \\ {[0.24]} \end{gathered}$
$\begin{aligned} & \text { PGB090-05A3 } \\ & \text { PGB090-10A3 } \end{aligned}$	$\begin{aligned} & 205.5 \\ & {[8.09]} \end{aligned}$	$\begin{gathered} 80.0 \\ {[3.15]} \end{gathered}$						¢90.0	070.0	6.0	$\varnothing 19.0$	M6-				
$\begin{aligned} & \text { PGB090-15A3 } \\ & \text { PGB090-25A3 } \end{aligned}$	$\begin{aligned} & 210.5 \\ & {[8.29]} \end{aligned}$							[ø3.54]	[®2.76]	[0.24]	[00.75]	1.0x13				
$\begin{aligned} & \text { PGB090-05A4 } \\ & \text { PGB090-10A4 } \end{aligned}$	$\begin{aligned} & 205.5 \\ & {[8.09]} \end{aligned}$	100.0						8115.0	095.0	$\left[\begin{array}{c} 8.0 \\ {[0.31]} \end{array}\right.$	$\begin{aligned} & \varnothing 22.0{ }^{\star} \\ & {[\varnothing 0.87]} \end{aligned}$	$\begin{gathered} \text { M8- } \\ 1.25 \times 17 \end{gathered}$				
$\begin{aligned} & \text { PGB120-15A4 } \\ & \text { PGB120-25A4 } \end{aligned}$	$\begin{gathered} 272.0 \\ {[10.71]} \\ \hline \end{gathered}$	[3.94]	$\begin{gathered} 70.0 \\ {[2.76]} \end{gathered}$	$\left\lvert\, \begin{gathered} 9.0 \\ {[0.35]} \end{gathered}\right.$	$\begin{aligned} & \varnothing 120.0 \\ & {[\varnothing 4.72]} \end{aligned}$	$\begin{gathered} \emptyset 90.0 \\ {[\varnothing 3.54]} \end{gathered}$	$\begin{gathered} \varnothing 332.0 \\ {[\varnothing 1.26]} \end{gathered}$	[04.53]	[ø3.74]				$\begin{aligned} & \varnothing 108.0 \\ & {[\varnothing 4.25]} \end{aligned}$	$\begin{gathered} \text { M8- } \\ 1.25 \times 16 \end{gathered}$	$\begin{gathered} 10.0 \\ {[0.39]} \end{gathered}$	$\begin{gathered} 8.0 \\ {[0.31]} \end{gathered}$
$\begin{aligned} & \text { PGB120-05A5 } \\ & \text { PGB120-10A5 } \end{aligned}$	$\begin{gathered} 266.0 \\ {[10.47]} \\ \hline \end{gathered}$	130.0						$\begin{aligned} & \varnothing 145.0 \\ & {[\varnothing 5.71]} \end{aligned}$	$\begin{aligned} & \varnothing 110.0 \\ & {[\varnothing 4.33]} \end{aligned}$							
$\begin{aligned} & \text { PGB120-15A5 } \\ & \text { PGB120-25A5 } \end{aligned}$	$\begin{gathered} 272.0 \\ {[10.71]} \\ \hline \end{gathered}$	[5.12]														
$\begin{aligned} & \text { PGB120-05A6 } \\ & \text { PGB120-10A6 } \end{aligned}$	$\begin{gathered} \hline 268.5 \\ {[10.57]} \end{gathered}$	$\begin{aligned} & 180.0 \\ & {[7.09]} \end{aligned}$						$\begin{aligned} & \varnothing 200.0 \\ & {[\varnothing 7.87]} \end{aligned}$	$\begin{aligned} & \varnothing 114.0 \\ & {[\varnothing 4.50]} \end{aligned}$		$\begin{aligned} & \varnothing 35.0{ }^{\star} \\ & {[\varnothing 1.38]} \end{aligned}$	$\begin{gathered} \text { M12- } \\ 1.75 \times 25 \end{gathered}$				
$\begin{aligned} & \text { PGB155-05A6 } \\ & \text { PGB155-10A6 } \end{aligned}$	$\begin{gathered} 341.0 \\ {[13.43]} \end{gathered}$		$\begin{gathered} 97.0 \\ {[3.82]} \end{gathered}$	$\begin{gathered} 12.0 \\ {[0.47]} \end{gathered}$	$\begin{aligned} & \varnothing 155.0 \\ & {[\varnothing 6.10]} \end{aligned}$	$\begin{aligned} & \varnothing 120.0 \\ & {[\varnothing 4.72]} \end{aligned}$	$\begin{aligned} & \emptyset 40.0 \\ & {[\varnothing 1.57]} \end{aligned}$						$\begin{aligned} & \varnothing 140.0 \\ & {[\varnothing 5.51]} \end{aligned}$	$\begin{aligned} & \text { M10- } \\ & 1.5 \times 20 \end{aligned}$	$\begin{gathered} 12.0 \\ {[0.47]} \end{gathered}$	
$\begin{aligned} & \text { PGB155-15A6 } \\ & \text { PGB155-25A6 } \end{aligned}$	$\begin{gathered} 364.0 \\ {[14.33]} \end{gathered}$															
* Dimension with supplied bushing																
NOTE: See our website: www.AutomationDirect.com for complete engineering drawings.																

Pricing \& Specifications - Hub Style In-Line PGD Series

SureGear ${ }^{\circledR}$ Precision Servo Gearboxes - Hub Style In-Line PCD Series																		
	늘		읒ㄴ													든 ⿹ㅡㄴ 는 훈		
PGD047-05A1	\$722.00		5:1	single	$\begin{gathered} 9 \\ {[80]} \end{gathered}$	$\begin{gathered} 18 \\ {[159]} \\ \hline \end{gathered}$	$\begin{gathered} 35 \\ {[310]} \\ \hline \end{gathered}$				$\begin{aligned} & \hline 300 \\ & {[67]} \end{aligned}$	$\begin{aligned} & 330 \\ & {[74]} \\ & \hline \end{aligned}$	0.043	95		0.7		
PGD047-10A1	\$722.00	47	10:1	single	$\begin{gathered} 6 \\ {[53]} \end{gathered}$	$\begin{gathered} 12 \\ {[106]} \\ \hline \end{gathered}$	$\begin{array}{r} 30 \\ {[266]} \\ \hline \end{array}$		4000	8000	$\begin{aligned} & 370 \\ & \text { [83] } \end{aligned}$	$\begin{gathered} 450 \\ {[101]} \\ \hline \end{gathered}$	0.032	95		[1.5]		
PGD047-25A1	\$902.00		25:1	double	$\begin{gathered} 9 \\ {[80]} \end{gathered}$	$\begin{gathered} \hline 18 \\ {[159]} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 35 \\ {[310]} \\ \hline \end{array}$	≤ 5			$\begin{aligned} & 510 \\ & {[115]} \\ & \hline \end{aligned}$	$\begin{gathered} 550 \\ {[124]} \\ \hline \end{gathered}$	0.034	90		$\begin{gathered} 0.8 \\ {[1.8]} \\ \hline \end{gathered}$		SVL-201(B)
PGD064-50A1	\$1,092.00		50:1	double	$\begin{gathered} 27 \\ {[239]} \\ \hline \end{gathered}$	$\begin{array}{r} 50 \\ {[443]} \\ \hline \end{array}$	$\begin{array}{r} 100 \\ {[885]} \\ \hline \end{array}$				$\begin{gathered} 850 \\ {[191]} \\ \hline \end{gathered}$	$\begin{gathered} 750 \\ {[169]} \\ \hline \end{gathered}$	0.049	90		$\begin{gathered} 1.6 \\ {[3.5]} \\ \hline \end{gathered}$		
PGD064-05A2	\$932.00		5:1	single	$\stackrel{27}{[239]}$	$\begin{gathered} 50 \\ {[443]} \end{gathered}$	$\begin{gathered} 100 \\ {[885]} \end{gathered}$				$\begin{aligned} & 400 \\ & {[90]} \end{aligned}$	$\begin{aligned} & 390 \\ & {[88]} \end{aligned}$	0.1	95		$\begin{gathered} 1.4 \\ {[3.1]} \end{gathered}$		
PGD064-10A2	\$932.00	64	10:1	single	$\begin{gathered} 18 \\ {[159]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ {[310]} \\ \hline \end{gathered}$	$\begin{gathered} 80 \\ {[708]} \\ \hline \end{gathered}$				$\begin{gathered} 500 \\ {[112]} \\ \hline \end{gathered}$	$\begin{gathered} 530 \\ {[119]} \\ \hline \end{gathered}$	0.062	95		$\begin{gathered} 1.4 \\ {[3.1]} \\ \hline \end{gathered}$		SVL
PGD064-25A2	\$1,092.00		25:1	double	$\begin{gathered} 27 \\ {[239]} \end{gathered}$	$\begin{gathered} 50 \\ {[443]} \end{gathered}$	$\begin{gathered} 100 \\ {[885]} \end{gathered}$				$\begin{gathered} 680 \\ {[153]} \end{gathered}$	$\begin{gathered} 750 \\ {[169]} \end{gathered}$	0.054	90		$\begin{gathered} 1.6 \\ {[3.5]} \end{gathered}$		$\begin{gathered} \text { 202(B) } \\ \text { SVL- } \end{gathered}$
PGD090-25A2	\$1,252.00		25:1	double	$\begin{gathered} 75 \\ {[664]} \end{gathered}$	$\begin{gathered} 125 \\ {[1106]} \end{gathered}$	$\begin{gathered} 250 \\ {[2213]} \end{gathered}$				$\begin{aligned} & 1300 \\ & \text { [292] } \end{aligned}$	$\begin{aligned} & 1400 \\ & {[315]} \end{aligned}$	0.130	90		$\begin{gathered} 4 \\ {[8.8]} \end{gathered}$		204(B)
PGD090-50A2	\$1,252.00		50:1	double	$\begin{gathered} 75 \\ {[664]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 125 \\ {[1106]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 250 \\ {[2213]} \\ \hline \end{array}$				$\begin{aligned} & 1700 \\ & {[382]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1700 \\ & {[382]} \\ & \hline \end{aligned}$	0.099	90		$\begin{gathered} 4 \\ {[8.8]} \\ \hline \end{gathered}$		
PGD090-05A3	\$1,092.00		5:1	single	$\begin{gathered} 75 \\ {[664]} \end{gathered}$	$\begin{gathered} 125 \\ {[1106]} \end{gathered}$	$\left[\begin{array}{c} 250 \\ {[2213]} \end{array}\right.$				$\begin{gathered} 780 \\ {[175]} \end{gathered}$	$\begin{gathered} 680 \\ {[153]} \end{gathered}$	0.580	95		$\begin{gathered} 3.6 \\ {[7.9]} \end{gathered}$		SVL-
PGD090-10A3	\$1,092.00	90	10:1	single	$\begin{gathered} 50 \\ {[443]} \end{gathered}$	$\begin{array}{r} 80 \\ {[708]} \\ \hline \end{array}$	$\begin{gathered} 200 \\ {[1770]} \end{gathered}$				$\begin{gathered} 980 \\ {[220]} \\ \hline \end{gathered}$	$\begin{gathered} 920 \\ {[207]} \end{gathered}$	0.330	95		$\begin{gathered} 3.6 \\ {[7.9]} \end{gathered}$		207(B)
PGD090-05A4	\$1,092.00		5:1	single	$\begin{gathered} 75 \\ {[664]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 125 \\ {[1106]} \\ \hline \end{gathered}$	$\begin{gathered} 250 \\ {[2213]} \\ \hline \end{gathered}$				$\begin{array}{r} 780 \\ {[175]} \\ \hline \end{array}$	$\begin{array}{r} 680 \\ {[153]} \\ \hline \end{array}$	0.580	95		$\begin{gathered} 3.6 \\ {[7.9]} \\ \hline \end{gathered}$		
PGD090-10A4	\$1,092.00		10:1	single	$\begin{gathered} 50 \\ {[443]} \end{gathered}$	$\begin{gathered} 80 \\ \text { [708] } \end{gathered}$	$\begin{gathered} 200 \\ \hline[1770] \\ \hline \end{gathered}$				$\begin{gathered} 980 \\ {[220]} \end{gathered}$	$\begin{gathered} 920 \\ {[207]} \\ \hline \end{gathered}$	0.330	95	$\begin{aligned} & 90^{\circ} \mathrm{C} \\ & {\left[194^{\circ} \mathrm{F}\right]} \end{aligned}$	$\begin{aligned} & 3.6 \\ & {[7.9]} \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \text { IP54 } \\ (\text { (PP65) } \end{gathered}\right.$	$210(B)$
PGD090-05A5	\$1,092.00		5:1	single	$\begin{gathered} 75 \\ {[664]} \end{gathered}$	$\begin{gathered} 125 \\ {[1106]} \end{gathered}$	$\begin{gathered} 250 \\ {[2213]} \end{gathered}$	≤ 3	3000	6000	$\begin{gathered} 780 \\ {[175]} \end{gathered}$	$\begin{gathered} 680 \\ {[153]} \end{gathered}$	0.580	95		$\begin{gathered} 3.6 \\ {[7.9]} \end{gathered}$		$\begin{aligned} & \text { SVM- } \\ & \text { 210(B) } \end{aligned}$
PGD110-50A2	\$1,598.00		50:1	double	$\begin{array}{\|c\|} \hline 180 \\ {[1593]} \\ \hline \end{array}$	$\begin{array}{r} 330 \\ {[2921]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 625 \\ {[5532]} \\ \hline \end{array}$				$\begin{array}{\|l\|} \hline 10000 \\ {[2248]} \\ \hline \end{array}$	$\begin{gathered} 6800 \\ {[1529]} \end{gathered}$	0.400	90		$\begin{gathered} 8.6 \\ {[19]} \\ \hline \end{gathered}$		$\begin{array}{\|l\|} \hline \text { SVL-202(B) } \\ \text { SVL-204(B) } \\ \hline \end{array}$
PGD110-25A3	\$1,598.00		25:1	double	$\begin{array}{\|c} 180 \\ {[1593]} \end{array}$	$\begin{gathered} 330 \\ {[2921]} \end{gathered}$	$\begin{gathered} 625 \\ {[5532]} \end{gathered}$				$\begin{gathered} 8200 \\ {[1843]} \end{gathered}$	$\begin{gathered} 5500 \\ {[1236]} \end{gathered}$	0.700	90		8.6 [19]		SVL
PGD110-50A3	\$1,598.00		50:1	double	$\begin{gathered} \hline 180 \\ {[1593]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 330 \\ {[2921]} \end{gathered}$	$\begin{array}{cc} \hline 625 \\ {[5532]} \end{array}$				$\begin{aligned} & 10000 \\ & {[2248]} \\ & \hline \end{aligned}$	$\begin{gathered} 6800 \\ {[1529]} \end{gathered}$	0.400	90		$\begin{array}{r}8.6 \\ \text { [19] } \\ \hline 8\end{array}$		207(B)
PGD110-25A4	\$1,598.00		25:1	double	$\begin{gathered} 180 \\ {[1593]} \end{gathered}$	$\begin{gathered} 330 \\ {[2921]} \end{gathered}$	$\begin{gathered} 625 \\ {[5532]} \end{gathered}$				$\begin{aligned} & 8200 \\ & {[1843]} \end{aligned}$	$\begin{aligned} & 5500 \\ & {[1236]} \end{aligned}$	0.700	90		8.6 [19]		SVL-
PGD110-50A4	\$1,598.00		50:1	double	$\begin{array}{\|c\|} \hline 180 \\ {[1593]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 330 \\ {[2921]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 625 \\ {[5532]} \\ \hline \end{array}$				$\begin{array}{\|l\|l\|} \hline 10000 \\ {[2248]} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6800 \\ {[1529]} \\ \hline \end{array}$	0.400	90		$\begin{gathered} 8.6 \\ {[19]} \\ \hline \end{gathered}$		210(B)
PGD110-10A5	\$1,358.00	110	10:1	single	$\begin{gathered} 120 \\ {[1062]} \end{gathered}$	$\begin{gathered} \hline 225 \\ {[1991]} \end{gathered}$	$\begin{array}{\|c} \hline 500 \\ {[4425]} \end{array}$				$\begin{array}{\|l\|} \hline 6200 \\ {[1394]} \end{array}$	$\begin{aligned} & 4200 \\ & \text { [944] } \end{aligned}$	1.100	95		$\begin{gathered} \hline 7.8 \\ {[17.2]} \end{gathered}$		
PGD110-25A5	\$1,598.00		25:1	double	$\begin{array}{\|c\|} \hline 180 \\ {[1593]} \\ \hline \end{array}$	$\begin{gathered} \hline 330 \\ {[2921]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 625 \\ {[5532]} \\ \hline \end{array}$				$\begin{aligned} & 8200 \\ & {[1843]} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5500 \\ {[1236]} \\ \hline \end{array}$	0.700	90		$\begin{gathered} \hline 8.6 \\ {[19]} \\ \hline \end{gathered}$		$\begin{aligned} & \text { SVM- } \\ & \text { 210(B) } \end{aligned}$
PGD110-35A5	\$1,598.00		35:1	double	$\begin{gathered} 180 \\ {[1593]} \end{gathered}$	$\begin{gathered} 330 \\ {[2921]} \end{gathered}$	$\begin{array}{\|c} 625 \\ {[5532]} \end{array}$				$\begin{aligned} & 9000 \\ & {[2023]} \end{aligned}$	$\begin{aligned} & 6100 \\ & {[1371]} \end{aligned}$	0.700	90		8.6 [19]		
PGD110-05A6	\$1,358.00		5:1	single	$\begin{array}{\|c\|} \hline 180 \\ {[1593]} \\ \hline \end{array}$	$\begin{array}{\|c} \hline 330 \\ {[2921]} \\ \hline \end{array}$	$\begin{gathered} 625 \\ {[5532]} \\ \hline \end{gathered}$				$\begin{array}{\|c\|} \hline 5000 \\ {[1124]} \\ \hline \end{array}$	$\begin{aligned} & 3400 \\ & {[427]} \end{aligned}$	2.300	95		$\begin{gathered} \hline 7.8 \\ {[17.2]} \end{gathered}$		SVM-220(B)
PGD110-10A6	\$1,358.00		10:1	single	$\begin{gathered} 120 \\ {[1062]} \end{gathered}$	$\begin{gathered} 225 \\ {[1991]} \end{gathered}$	$\begin{array}{\|c} 500 \\ {[4425]} \end{array}$				$\begin{array}{\|c} 6200 \\ {[1394]} \end{array}$	$\begin{aligned} & 4200 \\ & {[944]} \\ & \hline \end{aligned}$	1.100	95		$\begin{gathered} 7.8 \\ {[17.2]} \end{gathered}$		SVM-230(B)

Dimensions - Hub Style In-Line PGD Series

SureGear PGD Series Hub Style In-Line Gearboxes Dimension Drawing

SureGear Servo Gearbox Replacement Parts

Surchear ${ }^{\text {® Precision Scry }}$ Cearboxes - Replacement Paris		
Part Number	Price	Description
PG050-KEY	\$4.00	Output Shaft Key, replacement, $4 \times 4 \times 14 \mathrm{~mm}$, for SureGear PGA050 series gearboxes.
PG070-KEY	\$4.00	Output Shaft Key, replacement, $5 \times 5 \times 22 \mathrm{~mm}$, for SureGear PGA070 and PGB070 series gearboxes.
PG090-KEY	\$4.00	Output Shaft Key, replacement, $6 \times 6 \times 28 \mathrm{~mm}$, for SureGear PGA090 and PGB090 series gearboxes.
PG120-KEY	\$4.00	Output Shaft Key, replacement, $10 \times 8 \times 45 \mathrm{~mm}$, for SureGear PGA120 and PGB120 series gearboxes.
PG155-KEY	\$4.00	Output Shaft Key, replacement, $12 \times 8 \times 65 \mathrm{~mm}$, for SureGear PGA155 and PGB155 series gearboxes.
PGA4-A5-BUSH	\$19.00	Input Shaft Bushing, replacement, $28 \times 22 \times 30.5 \mathrm{~mm}$, for all SureGear gearboxes using SVL-210(B) and SVM-210(B) SureServo motors.
PGA6-BUSH	\$19.00	Input Shaft Bushing, replacement, $38 \times 35 \times 36 \mathrm{~mm}$, for all SureGear gearboxes using SVM-220(B) and SVM-230(B) SureServo motors.

[^0]: * Available load inertia is calculated based on servo motor inertia using the formula: Available Inertia $=\left(5 \times\right.$ Motor Inertia - Gearbox Inertia) x (Gear Ratio) ${ }^{2}$ A 5:1 inertia mismatch is a good target for design purposes. Systems with lower or higher mismatch may be possible, depending on operating conditions.

